메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Expanding primary metabolism helps generate the metabolic robustness to facilitate antibiotic biosynthesis in Streptomyces

Author keywords

Actinobacteria; Antibiotics; Evolution; Primary metabolism; Pyruvate kinase; Streptomyces

Indexed keywords

PYRUVATE KINASE; ANTIINFECTIVE AGENT;

EID: 85043517693     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.02283-17     Document Type: Article
Times cited : (28)

References (44)
  • 2
    • 84928213157 scopus 로고    scopus 로고
    • Tailoring specialized metabolite production in Streptomyces
    • Hiltner JK, Hunter IS, Hoskisson PA. 2015. Tailoring specialized metabolite production in Streptomyces. Adv Appl Microbiol 91:237–255. https://doi.org/10.1016/bs.aambs.2015.02.002.
    • (2015) Adv Appl Microbiol , vol.91 , pp. 237-255
    • Hiltner, J.K.1    Hunter, I.S.2    Hoskisson, P.A.3
  • 3
    • 36348992094 scopus 로고    scopus 로고
    • Robustness and evolvability: A paradox resolved
    • Wagner A. 2008. Robustness and evolvability: a paradox resolved. Proc Biol Sci 275:91–100. https://doi.org/10.1098/rspb.2007.1137.
    • (2008) Proc Biol Sci , vol.275 , pp. 91-100
    • Wagner, A.1
  • 4
    • 41649110614 scopus 로고    scopus 로고
    • Gene duplications, robustness and evolutionary innovations
    • Wagner A. 2008. Gene duplications, robustness and evolutionary innovations. Bioessays 30:367–373. https://doi.org/10.1002/bies.20728.
    • (2008) Bioessays , vol.30 , pp. 367-373
    • Wagner, A.1
  • 5
    • 79851505378 scopus 로고    scopus 로고
    • Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes
    • Treangen TJ, Rocha EPC. 2011. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 7:e1001284. https://doi.org/10.1371/journal.pgen.1001284.
    • (2011) Plos Genet , vol.7
    • Treangen, T.J.1    Rocha, E.P.C.2
  • 6
    • 51649110669 scopus 로고    scopus 로고
    • A compromise required by gene sharing enables survival: Implications for evolution of new enzyme activities
    • McLoughlin SY, Copley SD. 2008. A compromise required by gene sharing enables survival: implications for evolution of new enzyme activities. Proc Natl Acad Sci U S A 105:13497–13502. https://doi.org/10.1073/pnas.0804804105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 13497-13502
    • McLoughlin, S.Y.1    Copley, S.D.2
  • 7
    • 80053605436 scopus 로고    scopus 로고
    • Duplication and evolution of devA-like genes in Streptomyces has resulted in distinct developmental roles
    • Clark LC, Hoskisson PA. 2011. Duplication and evolution of devA-like genes in Streptomyces has resulted in distinct developmental roles. PLoS One 6:e25049. https://doi.org/10.1371/journal.pone.0025049.
    • (2011) Plos One , vol.6
    • Clark, L.C.1    Hoskisson, P.A.2
  • 8
    • 84873117426 scopus 로고    scopus 로고
    • Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence
    • Clark LC, Seipke RF, Prieto P, Willemse J, van Wezel GP, Hutchings MI, Hoskisson PA. 2013. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Sci Rep 3:1109. https://doi.org/10.1038/srep01109.
    • (2013) Sci Rep , vol.3 , Issue.1109
    • Clark, L.C.1    Seipke, R.F.2    Prieto, P.3    Willemse, J.4    van Wezel, G.P.5    Hutchings, M.I.6    Hoskisson, P.A.7
  • 9
    • 0345492332 scopus 로고    scopus 로고
    • Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species
    • Challis GL, Hopwood DA. 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100(Suppl 2): 14555–14561. https://doi.org/10.1073/pnas.1934677100.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 14555-14561
    • Challis, G.L.1    Hopwood, D.A.2
  • 10
    • 75749115932 scopus 로고    scopus 로고
    • The complex extracellular biology of Streptomyces
    • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. 2010. The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198. https://doi.org/10.1111/j.1574-6976.2009.00206.x.
    • (2010) FEMS Microbiol Rev , vol.34 , pp. 171-198
    • Chater, K.F.1    Biró, S.2    Lee, K.J.3    Palmer, T.4    Schrempf, H.5
  • 11
    • 35848947748 scopus 로고    scopus 로고
    • Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose
    • Kim J, Copley SD. 2007. Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose. Biochemistry 46:12501–12511. https://doi.org/10.1021/bi7014629.
    • (2007) Biochemistry , vol.46 , pp. 12501-12511
    • Kim, J.1    Copley, S.D.2
  • 12
    • 2442537233 scopus 로고    scopus 로고
    • Gene regulatory network growth by duplication
    • Teichmann SA, Babu MM. 2004. Gene regulatory network growth by duplication. Nat Genet 36:492– 496. https://doi.org/10.1038/ng1340.
    • (2004) Nat Genet , vol.36 , pp. 492-496
    • Teichmann, S.A.1    Babu, M.M.2
  • 14
    • 33746908131 scopus 로고    scopus 로고
    • The evolution of development in Streptomyces analysed by genome comparisons
    • Chater KF, Chandra G. 2006. The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30: 651– 672. https://doi.org/10.1111/j.1574-6976.2006.00033.x.
    • (2006) FEMS Microbiol Rev , vol.30 , pp. 651-672
    • Chater, K.F.1    Chandra, G.2
  • 15
    • 85043510004 scopus 로고    scopus 로고
    • Automating assessment of the undiscovered biosynthetic potential of Actinobacteria
    • Tokovenko B, Rebets Y, Luzhetskyy A. 2016. Automating assessment of the undiscovered biosynthetic potential of Actinobacteria. bioRxiv https://doi.org/10.1101/036087.
    • (2016) Biorxiv
    • Tokovenko, B.1    Rebets, Y.2    Luzhetskyy, A.3
  • 16
    • 15744383448 scopus 로고    scopus 로고
    • Regulation of secondary metabolism in streptomycetes
    • Bibb MJ. 2005. Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215. https://doi.org/10.1016/j.mib.2005.02.016.
    • (2005) Curr Opin Microbiol , vol.8 , pp. 208-215
    • Bibb, M.J.1
  • 17
    • 33845487715 scopus 로고    scopus 로고
    • Balancing robustness and evolvability
    • Lenski RE, Barrick JE, Ofria C. 2006. Balancing robustness and evolvability. PLoS Biol 4:e428. https://doi.org/10.1371/journal.pbio.0040428.
    • (2006) Plos Biol , vol.4
    • Lenski, R.E.1    Barrick, J.E.2    Ofria, C.3
  • 18
    • 0030836756 scopus 로고    scopus 로고
    • Evolution of genetic redundancy
    • Nowak MA, Boerlijst MC, Cooke J, Smith JM. 1997. Evolution of genetic redundancy. Nature 388:167–171. https://doi.org/10.1038/40618.
    • (1997) Nature , vol.388 , pp. 167-171
    • Nowak, M.A.1    Boerlijst, M.C.2    Cooke, J.3    Smith, J.M.4
  • 20
    • 84856188450 scopus 로고    scopus 로고
    • What can genome-scale metabolic network reconstructions do for prokaryotic systematics?
    • Barona-Gómez F, Cruz-Morales P, Noda-García L. 2012. What can genome-scale metabolic network reconstructions do for prokaryotic systematics? Antonie Van Leeuwenhoek 101:35– 43. https://doi.org/10.1007/s10482-011-9655-1.
    • (2012) Antonie Van Leeuwenhoek , vol.101 , pp. 35-43
    • Barona-Gómez, F.1    Cruz-Morales, P.2    Noda-García, L.3
  • 22
    • 54449101282 scopus 로고    scopus 로고
    • Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion
    • Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J. 2008. Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Biol Chem 283: 25186–25199. https://doi.org/10.1074/jbc.M803105200.
    • (2008) J Biol Chem , vol.283 , pp. 25186-25199
    • Borodina, I.1    Siebring, J.2    Zhang, J.3    Smith, C.P.4    van Keulen, G.5    Dijkhuizen, L.6    Nielsen, J.7
  • 24
    • 84856587704 scopus 로고    scopus 로고
    • Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited
    • Kämpfer P, Glaeser SP. 2012. Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Environ Microbiol 14:291–317. https://doi.org/10.1111/j.1462-2920.2011.02615.x.
    • (2012) Environ Microbiol , vol.14 , pp. 291-317
    • Kämpfer, P.1    Glaeser, S.P.2
  • 25
    • 0038241711 scopus 로고    scopus 로고
    • Pyruvate kinase: Current status of regulatory and functional properties
    • Muñoz ME, Ponce E. 2003. Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol 135:197–218. https://doi.org/10.1016/S1096-4959(03)00081-2.
    • (2003) Comp Biochem Physiol B Biochem Mol Biol , vol.135 , pp. 197-218
    • Muñoz, M.E.1    Ponce, E.2
  • 26
    • 84864447599 scopus 로고    scopus 로고
    • Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145
    • Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL. 2012. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3:2716. https://doi.org/10.1039/c2sc20410j.
    • (2012) Chem Sci , vol.3 , pp. 2716
    • Gomez-Escribano, J.P.1    Song, L.2    Fox, D.J.3    Yeo, V.4    Bibb, M.J.5    Challis, G.L.6
  • 27
    • 0033925731 scopus 로고    scopus 로고
    • Primary metabolism and its control in streptomycetes: A most unusual group of bacteria
    • Hodgson DA. 2000. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238. https://doi.org/10.1016/S0065-2911(00)42003-5.
    • (2000) Adv Microb Physiol , vol.42 , pp. 47-238
    • Hodgson, D.A.1
  • 28
    • 0030052911 scopus 로고    scopus 로고
    • Correlation between carbon flux through the pentose phosphate pathway and production of the antibiotic methylenomycin in Streptomyces coelicolor A3(2)
    • Obanye AIC, Hobbs G, Gardner DCJ, Oliver SG. 1996. Correlation between carbon flux through the pentose phosphate pathway and production of the antibiotic methylenomycin in Streptomyces coelicolor A3(2). Microbiology 142:133–137. https://doi.org/10.1099/13500872-142 -1-133.
    • (1996) Microbiology , vol.142 , pp. 133-137
    • Obanye, A.I.C.1    Hobbs, G.2    Gardner, D.C.J.3    Oliver, S.G.4
  • 29
    • 17644375240 scopus 로고    scopus 로고
    • The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria
    • Sauer U, Eikmanns BJ. 2005. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794. https://doi.org/10.1016/j.femsre.2004.11.002.
    • (2005) FEMS Microbiol Rev , vol.29 , pp. 765-794
    • Sauer, U.1    Eikmanns, B.J.2
  • 32
    • 84943279502 scopus 로고    scopus 로고
    • ScbR and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor
    • Li X, Wang J, Li S, Ji J, Wang W, Yang K. 2015. ScbR and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 5:14831. https://doi.org/10.1038/srep14831.
    • (2015) Sci Rep , vol.5
    • Li, X.1    Wang, J.2    Li, S.3    Ji, J.4    Wang, W.5    Yang, K.6
  • 33
    • 13244255415 scopus 로고    scopus 로고
    • MUSCLE: A multiple sequence alignment method with reduced time and space complexity
    • Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. https://doi.org/10.1186/1471-2105-5-113.
    • (2004) BMC Bioinformatics , vol.5 , pp. 113
    • Edgar, R.C.1
  • 35
    • 3242810318 scopus 로고    scopus 로고
    • MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment
    • Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. https://doi.org/10.1093/bib/5.2.150.
    • (2004) Brief Bioinform , vol.5 , pp. 150-163
    • Kumar, S.1    Tamura, K.2    Nei, M.3
  • 36
    • 0022507362 scopus 로고
    • Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions
    • Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426. https://doi.org/10.1093/oxfordjournals.molbev.a040410.
    • (1986) Mol Biol E , vol.3 , pp. 418-426
    • Nei, M.1    Gojobori, T.2
  • 37
    • 0000732090 scopus 로고
    • Evolution of protein molecules
    • Munro HN, Academic Press, New York, NY
    • Jukes TH, Cantor CR. 1969. Evolution of protein molecules, p 21–132. In Munro HN (ed), Mammalian protein metabolism, vol 3. Academic Press, New York, NY.
    • (1969) Mammalian Protein Metabolism , vol.3 , pp. 21-132
    • Jukes, T.H.1    Cantor, C.R.2
  • 39
    • 0037452723 scopus 로고    scopus 로고
    • PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin
    • Gust B, Challis GL, Fowler K, Kieser T, Chater KF. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546. https://doi.org/10.1073/pnas.0337542100.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 1541-1546
    • Gust, B.1    Challis, G.L.2    Fowler, K.3    Kieser, T.4    Chater, K.F.5
  • 40
    • 79952485577 scopus 로고    scopus 로고
    • A transposon insertion single-gene knockout library and new ordered cosmid library for the model organism Streptomyces coelicolor A3(2)
    • Fernández-Martínez LT, Del Sol R, Evans MC, Fielding S, Herron PR, Chandra G, Dyson PJ. 2011. A transposon insertion single-gene knockout library and new ordered cosmid library for the model organism Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek 99:515–522. https:// doi.org/10.1007/s10482-010-9518-1.
    • (2011) Antonie Van Leeuwenhoek , vol.99 , pp. 515-522
    • Fernández-Martínez, L.T.1    Del Sol, R.2    Evans, M.C.3    Fielding, S.4    Herron, P.R.5    Chandra, G.6    Dyson, P.J.7
  • 42
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640– 6645. https://doi.org/10.1073/pnas.120163297.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 43
    • 0000717689 scopus 로고
    • Enzymatic assay of pyruvate kinase
    • Bergmeyer HU, 2nd ed, Academic Press, New York, NY
    • Bergmeyer HU, Gawehn K, Grassl M. 1974. Enzymatic assay of pyruvate kinase, p 509–510. In Bergmeyer HU (ed), Methods of enzymatic analysis, 2nd ed, vol 1. Academic Press, New York, NY.
    • (1974) Methods of Enzymatic Analysis , vol.1 , pp. 509-510
    • Bergmeyer, H.U.1    Gawehn, K.2    Grassl, M.3
  • 44
    • 0026279651 scopus 로고
    • Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations
    • Lenski RE, Rose MR, Simpson SC, Tadler SC. 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138:1315–1341. https://doi.org/10.1086/285289.
    • (1991) Am Nat , vol.138 , pp. 1315-1341
    • Lenski, R.E.1    Rose, M.R.2    Simpson, S.C.3    Tadler, S.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.