메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages

Deep convolutional encoder-decoder for myelin and axon segmentation

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; DECODING; IMAGE SEGMENTATION; NEURAL NETWORKS;

EID: 85010904114     PISSN: 21512191     EISSN: 21512205     Source Type: Conference Proceeding    
DOI: 10.1109/IVCNZ.2016.7804455     Document Type: Conference Paper
Times cited : (16)

References (23)
  • 1
    • 85020309324 scopus 로고    scopus 로고
    • SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling
    • V. Badrinarayanan, A. Handa and R. Cipolla. "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling", CVPR, 2014.
    • (2014) CVPR
    • Badrinarayanan, V.1    Handa, A.2    Cipolla, R.3
  • 2
    • 85020309324 scopus 로고    scopus 로고
    • SegNet: A deep convolutional encoder-decoder architecture for image segmentation
    • V. Badrinarayanan, A. Kandell and R. Cipolla. "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation", CVPR, 2015.
    • (2015) CVPR
    • Badrinarayanan, V.1    Kandell, A.2    Cipolla, R.3
  • 4
    • 84990051868 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille. "Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs", ICIR, pp. 1-14, 2014.
    • (2014) ICIR , pp. 1-14
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 5
    • 84966431145 scopus 로고    scopus 로고
    • Image segmentation by nonlinear filtering of optical Hough transform
    • A. Fernandez, J. L. Florez, J. R. Alonso, and J. A. Ferrari. "Image segmentation by nonlinear filtering of optical Hough transform", Applied Optics, vol. 55, pp. 3632-3638, 2016.
    • (2016) Applied Optics , vol.55 , pp. 3632-3638
    • Fernandez, A.1    Florez, J.L.2    Alonso, J.R.3    Ferrari, J.A.4
  • 12
    • 84931577575 scopus 로고    scopus 로고
    • CRF learning with CNN features for image segmentation
    • F. Liu, G. Lin, and C. Shen. "CRF learning with CNN features for image segmentation", Pattern Recognition, vol. 48, pp. 2983-2992, 2015.
    • (2015) Pattern Recognition , vol.48 , pp. 2983-2992
    • Liu, F.1    Lin, G.2    Shen, C.3
  • 14
    • 85080666089 scopus 로고    scopus 로고
    • Master's thesis, University of Otago, Dunedin, New Zealand
    • B. MacDonell. "Spinal cord axon segmentation", Master's thesis, University of Otago, Dunedin, New Zealand, 2014.
    • (2014) Spinal Cord Axon Segmentation
    • MacDonell, B.1
  • 15
    • 85080717547 scopus 로고    scopus 로고
    • A comprehensive review of image enhancement techniques
    • R. Miani and H. Aggrawal. "A comprehensive review of image enhancement techniques", Journal of Computing, vol. 2, pp. 28-13, 2010.
    • (2010) Journal of Computing , vol.2 , pp. 13-28
    • Miani, R.1    Aggrawal, H.2
  • 16
    • 80052306840 scopus 로고    scopus 로고
    • A semi-automated method for identifying and measuring myelinated nerve fibers in scanning electron microscope images
    • H. L. More, J. Chen, E. Gibson, J. M. Donelan, and M. F. Beg. "A semi-automated method for identifying and measuring myelinated nerve fibers in scanning electron microscope images", Journal of Neuroscience Methods, vol. 201, pp. 149-158, 2011.
    • (2011) Journal of Neuroscience Methods , vol.201 , pp. 149-158
    • More, H.L.1    Chen, J.2    Gibson, E.3    Donelan, J.M.4    Beg, M.F.5
  • 18
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong and B. Han. "Learning Deconvolution Network for Semantic Segmentation", ICCV, vol. 1, pp. 1520-1528, 2015.
    • (2015) ICCV , vol.1 , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 19
    • 41649107790 scopus 로고    scopus 로고
    • Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: Simulation and experimental studies
    • H. H. Ong, A. C. Write, S. L. Wehrli, A. Souza, E. D. Schwartz, S. N. Hwang, and F. W. Wehri. "Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: Simulation and experimental studies", NeuroImage, vol. 40, pp. 1619-1632, 2008.
    • (2008) NeuroImage , vol.40 , pp. 1619-1632
    • Ong, H.H.1    Write, A.C.2    Wehrli, S.L.3    Souza, A.4    Schwartz, E.D.5    Hwang, S.N.6    Wehri, F.W.7
  • 20
    • 0031206664 scopus 로고    scopus 로고
    • A fast iterative scheme for multilevel thresholding methods
    • P. Y. Yin and L. H. Chen. "A fast iterative scheme for multilevel thresholding methods", Signal Processing, vol. 60, pp. 305-313, 1997.
    • (1997) Signal Processing , vol.60 , pp. 305-313
    • Yin, P.Y.1    Chen, L.H.2
  • 21
    • 0030824981 scopus 로고    scopus 로고
    • Threshold selection using renyi's entropy
    • HP. Sahoo, C. Wilkins, and J. Yeager. "Threshold selection using renyi's entropy", Pattern Recognition, vol. 30, pp. 71-84, 1997.
    • (1997) Pattern Recognition , vol.30 , pp. 71-84
    • Sahoo, H.P.1    Wilkins, C.2    Yeager, J.3
  • 22
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber. "Deep learning in neural networks: An overview", Elsevier, vol. 61, pp. 85-117, 2015.
    • (2015) Elsevier , vol.61 , pp. 85-117
    • Schmidhuber, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.