메뉴 건너뛰기




Volumn 187, Issue 3, 2018, Pages 576-584

Multiple Imputation for Incomplete Data in Epidemiologic Studies

Author keywords

epidemiologic studies; missing data; multiple imputation; parametric methods

Indexed keywords

EPIDEMIOLOGY; NUMERICAL METHOD; PARAMETER ESTIMATION; PREGNANCY; SMOKING;

EID: 85042938516     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwx349     Document Type: Article
Times cited : (166)

References (53)
  • 1
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
    • Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
    • (2009) BMJ , vol.338 , pp. b2393
    • Sterne, J.A.1    White, I.R.2    Carlin, J.B.3
  • 2
    • 65249094801 scopus 로고    scopus 로고
    • Multiple imputation with large data sets: A case study of the Children's Mental Health Initiative
    • Stuart EA, Azur M, Frangakis C, et al. Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. Am J Epidemiol. 2009;169(9):1133-1139.
    • (2009) Am J Epidemiol. , vol.169 , Issue.9 , pp. 1133-1139
    • Stuart, E.A.1    Azur, M.2    Frangakis, C.3
  • 4
    • 34250686456 scopus 로고    scopus 로고
    • Multiple imputation: Review of theory, implementation and software
    • Harel O, Zhou XH. Multiple imputation: review of theory, implementation and software. Stat Med. 2007;26(16): 3057-3077.
    • (2007) Stat Med. , vol.26 , Issue.16 , pp. 3057-3077
    • Harel, O.1    Zhou, X.H.2
  • 5
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: A comparison ofmissing datamethods and software to fit incomplete data regression models
    • Horton NJ, Kleinman KP. Much ado about nothing: a comparison ofmissing datamethods and software to fit incomplete data regression models. Am Stat. 2007;61(1):79-90.
    • (2007) Am Stat. , vol.61 , Issue.1 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 6
    • 0038479971 scopus 로고    scopus 로고
    • The Collaborative Perinatal Project: Lessons and legacy
    • Hardy JB. The Collaborative Perinatal Project: lessons and legacy. Ann Epidemiol. 2003;13(5):303-311.
    • (2003) Ann Epidemiol. , vol.13 , Issue.5 , pp. 303-311
    • Hardy, J.B.1
  • 7
    • 85042928346 scopus 로고    scopus 로고
    • Principled approaches to missing data in epidemiologic studies
    • Perkins NJ, Cole SR, Harel O, et al. Principled approaches to missing data in epidemiologic studies. Am J Epidemiol. 2018; 187(3):568-575.
    • (2018) Am J Epidemiol. , vol.187 , Issue.3 , pp. 568-575
    • Perkins, N.J.1    Cole, S.R.2    Harel, O.3
  • 8
    • 84944215477 scopus 로고    scopus 로고
    • Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression
    • Bartlett JW, Harel O, Carpenter JR. Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression. Am J Epidemiol. 2015;182(8):730-736.
    • (2015) Am J Epidemiol. , vol.182 , Issue.8 , pp. 730-736
    • Bartlett, J.W.1    Harel, O.2    Carpenter, J.R.3
  • 11
    • 77249147857 scopus 로고    scopus 로고
    • Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
    • Lee KJ, Carlin JB. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Am J Epidemiol. 2010;171(5):624-632.
    • (2010) Am J Epidemiol. , vol.171 , Issue.5 , pp. 624-632
    • Lee, K.J.1    Carlin, J.B.2
  • 13
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique formultiply imputing missing values using a series of regression models
    • Raghunathan, TE, Lepkowski, JM, van Hoewyk, J, et al. A multivariate technique formultiply imputing missing values using a series of regression models. SurvMethodol. 2001;27(1):85-95.
    • (2001) SurvMethodol. , vol.27 , Issue.1 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Van Hoewyk, J.3
  • 14
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16(3):219-242.
    • (2007) Stat Methods Med Res. , vol.16 , Issue.3 , pp. 219-242
    • Van Buuren, S.1
  • 15
    • 84952497143 scopus 로고
    • Missing-data adjustments in large surveys
    • Little RJA. Missing-data adjustments in large surveys. J Bus Econ Stat. 1988;6(3):287-296.
    • (1988) J Bus Econ Stat. , vol.6 , Issue.3 , pp. 287-296
    • Little, R.J.A.1
  • 16
    • 0030207783 scopus 로고    scopus 로고
    • Partially parametric techniques for multiple imputation
    • Schenker N, Taylor JMG. Partially parametric techniques for multiple imputation. Comput Stat Data Anal. 1996;22(4):425-446.
    • (1996) Comput Stat Data Anal. , vol.22 , Issue.4 , pp. 425-446
    • Schenker, N.1    Taylor, J.M.G.2
  • 17
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4):377-399.
    • (2011) Stat Med. , vol.30 , Issue.4 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 18
    • 84900436271 scopus 로고    scopus 로고
    • Comparison of methods for imputing limited-range variables: A simulation study
    • Rodwell L, Lee KJ, Romaniuk H, et al. Comparison of methods for imputing limited-range variables: a simulation study. BMC Med Res Methodol. 2014;14:57.
    • (2014) BMC Med Res Methodol. , vol.14 , pp. 57
    • Rodwell, L.1    Lee, K.J.2    Romaniuk, H.3
  • 19
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Heckman J. Sample selection bias as a specification error. Econometrica. 1979;47:153-161.
    • (1979) Econometrica. , vol.47 , pp. 153-161
    • Heckman, J.1
  • 20
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis [with discussion]
    • Diggle P, Kenward MG. Informative drop-out in longitudinal data analysis [with discussion]. Appl Stat. 1994;43(1):49-93.
    • (1994) Appl Stat. , vol.43 , Issue.1 , pp. 49-93
    • Diggle, P.1    Kenward, M.G.2
  • 21
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little RJA. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc. 1993;88(421):125-134.
    • (1993) J Am Stat Assoc. , vol.88 , Issue.421 , pp. 125-134
    • Little, R.J.A.1
  • 22
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little RJA. A class of pattern-mixture models for normal incomplete data. Biometrika. 1994;81(3):471-483.
    • (1994) Biometrika. , vol.81 , Issue.3 , pp. 471-483
    • Little, R.J.A.1
  • 23
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeatedmeasures studies
    • Little RJA. Modeling the drop-out mechanism in repeatedmeasures studies. J Am Stat Assoc. 1995;90(431):1112-1121.
    • (1995) J Am Stat Assoc. , vol.90 , Issue.431 , pp. 1112-1121
    • Little, R.J.A.1
  • 24
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics. 1988;44:175-188.
    • (1988) Biometrics. , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 25
    • 85042933363 scopus 로고    scopus 로고
    • Inverse-probabilityweighted estimation for monotone and nonmonotone missing data
    • Sun BL, Perkins NJ, Cole SR, et al. Inverse-probabilityweighted estimation for monotone and nonmonotone missing data. Am J Epidemiol. 2018;187(3):585-591.
    • (2018) Am J Epidemiol. , vol.187 , Issue.3 , pp. 585-591
    • Sun, B.L.1    Perkins, N.J.2    Cole, S.R.3
  • 26
    • 84936853890 scopus 로고
    • A test of missing completely at random for multivariate data with missing values
    • Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc. 1988, 83(404):1198-1202.
    • (1988) J Am Stat Assoc. , vol.83 , Issue.404 , pp. 1198-1202
    • Little, R.J.A.1
  • 30
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins LM, Schafer JL, Kam CM. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods. 2001;6(4):330-351.
    • (2001) Psychol Methods. , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 31
    • 84878998135 scopus 로고    scopus 로고
    • Addressing missing data mechanism uncertainty using multiple-model multiple imputation: Application to a longitudinal clinical trial
    • Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. Ann Appl Stat. 2012;6(4):1814-1837.
    • (2012) Ann Appl Stat. , vol.6 , Issue.4 , pp. 1814-1837
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 32
    • 84903820681 scopus 로고    scopus 로고
    • Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: Application to a smoking cessation trial
    • Siddique J, Harel O, Crespi CM, et al. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Stat Med. 2014;33(17):3013-3028.
    • (2014) Stat Med. , vol.33 , Issue.17 , pp. 3013-3028
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 33
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B. 1977;39(1):1-38.
    • (1977) J R Stat Soc ser B. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 35
    • 2442736478 scopus 로고    scopus 로고
    • Small-sample degrees of freedom with multiple imputation
    • Barnard J, Rubin DB. Small-sample degrees of freedom with multiple imputation. Biometrika. 1999;86(4):948-955.
    • (1999) Biometrika. , vol.86 , Issue.4 , pp. 948-955
    • Barnard, J.1    Rubin, D.B.2
  • 36
    • 0037811739 scopus 로고    scopus 로고
    • A degrees-of-freedom approximation in multiple imputation
    • Lipsitz S, Parzen M, Zhao LP. A degrees-of-freedom approximation in multiple imputation. J Stat Comput Simul. 2002;72(4):309-318.
    • (2002) J Stat Comput Simul. , vol.72 , Issue.4 , pp. 309-318
    • Lipsitz, S.1    Parzen, M.2    Zhao, L.P.3
  • 37
    • 34548452163 scopus 로고    scopus 로고
    • Small-sample degrees of freedom for multicomponent significance tests with multiple imputation for missing data
    • Reiter JP. Small-sample degrees of freedom for multicomponent significance tests with multiple imputation for missing data. Biometrika. 2007;94(2):502-508.
    • (2007) Biometrika. , vol.94 , Issue.2 , pp. 502-508
    • Reiter, J.P.1
  • 38
    • 80053977924 scopus 로고    scopus 로고
    • A closer examination of three smallsample approximations to the multiple-imputation degrees of freedom
    • Wagstaff DA, Harel O. A closer examination of three smallsample approximations to the multiple-imputation degrees of freedom. Stata J. 2011;11(3):403-419.
    • (2011) Stata J. , vol.11 , Issue.3 , pp. 403-419
    • Wagstaff, D.A.1    Harel, O.2
  • 39
    • 85042936484 scopus 로고    scopus 로고
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
  • 40
    • 85042908969 scopus 로고    scopus 로고
    • SAS Institute Inc. SAS/STAT Software, Version 9.1. Cary, NC: SAS Institute Inc.; 2003
    • SAS Institute Inc. SAS/STAT Software, Version 9.1. Cary, NC: SAS Institute Inc.; 2003.
  • 41
    • 85042932711 scopus 로고    scopus 로고
    • StataCorp LP. Stata Data Analysis Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011
    • StataCorp LP. Stata Data Analysis Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011.
  • 42
    • 33845210459 scopus 로고    scopus 로고
    • Inferences on missing information under multiple imputation and two-stage multiple imputation
    • Harel O. Inferences on missing information under multiple imputation and two-stage multiple imputation. Stat Method. 2007;4:75-89.
    • (2007) Stat Method. , vol.4 , pp. 75-89
    • Harel, O.1
  • 43
    • 45149109361 scopus 로고    scopus 로고
    • Outfluence\-The impact of missing values
    • Harel O. Outfluence\-The impact of missing values. Model Assist Stat Appl. 2008;3:161-168.
    • (2008) Model Assist Stat Appl. , vol.3 , pp. 161-168
    • Harel, O.1
  • 44
    • 70249149311 scopus 로고    scopus 로고
    • Inferences on the outfluence-how do missing values impact your analysis?
    • Harel O, Stratton J. Inferences on the outfluence-how do missing values impact your analysis? Commun Stat Theory Methods. 2009;38(16-17):2884-2898.
    • (2009) Commun Stat Theory Methods. , vol.38 , Issue.16-17 , pp. 2884-2898
    • Harel, O.1    Stratton, J.2
  • 45
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika. 1976; 63(3):581-592.
    • (1976) Biometrika. , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.B.1
  • 47
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. 2007;8(3):206-213.
    • (2007) Prev Sci. , vol.8 , Issue.3 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 48
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • Bodner TE. What improves with increased missing data imputations? Struct Equ Modeling. 2008;15(4):651-675.
    • (2008) Struct Equ Modeling. , vol.15 , Issue.4 , pp. 651-675
    • Bodner, T.E.1
  • 49
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation
    • Horton NJ, Lipsitz SR, Parzen M. A potential for bias when rounding in multiple imputation. Am Stat. 2003;57(4): 229-232.
    • (2003) Am Stat. , vol.57 , Issue.4 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 50
    • 33847711413 scopus 로고    scopus 로고
    • Robustness of a multivariate normal approximation for imputation of incomplete binary data
    • Bernaards CA, Belin TR, Schafer JL. Robustness of a multivariate normal approximation for imputation of incomplete binary data. Stat Med. 2007;26(6):1368-1382.
    • (2007) Stat Med. , vol.26 , Issue.6 , pp. 1368-1382
    • Bernaards, C.A.1    Belin, T.R.2    Schafer, J.L.3
  • 51
    • 63649163010 scopus 로고    scopus 로고
    • A preliminary study of active compared with passive imputation of missing body mass index values among non-Hispanic white youths
    • Wagstaff DA, Kranz S, Harel O. A preliminary study of active compared with passive imputation of missing body mass index values among non-Hispanic white youths. Am J Clin Nutr. 2009;89(4):1025-1030.
    • (2009) Am J Clin Nutr. , vol.89 , Issue.4 , pp. 1025-1030
    • Wagstaff, D.A.1    Kranz, S.2    Harel, O.3
  • 52
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng XL. Multiple-imputation inferences with uncongenial sources of input. Stat Sci. 1994;9(4):538-558.
    • (1994) Stat Sci. , vol.9 , Issue.4 , pp. 538-558
    • Meng, X.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.