-
1
-
-
68249114452
-
Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
-
Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
-
(2009)
BMJ
, vol.338
, pp. b2393
-
-
Sterne, J.A.1
White, I.R.2
Carlin, J.B.3
-
2
-
-
65249094801
-
Multiple imputation with large data sets: A case study of the Children's Mental Health Initiative
-
Stuart EA, Azur M, Frangakis C, et al. Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. Am J Epidemiol. 2009;169(9):1133-1139.
-
(2009)
Am J Epidemiol.
, vol.169
, Issue.9
, pp. 1133-1139
-
-
Stuart, E.A.1
Azur, M.2
Frangakis, C.3
-
4
-
-
34250686456
-
Multiple imputation: Review of theory, implementation and software
-
Harel O, Zhou XH. Multiple imputation: review of theory, implementation and software. Stat Med. 2007;26(16): 3057-3077.
-
(2007)
Stat Med.
, vol.26
, Issue.16
, pp. 3057-3077
-
-
Harel, O.1
Zhou, X.H.2
-
5
-
-
33846873244
-
Much ado about nothing: A comparison ofmissing datamethods and software to fit incomplete data regression models
-
Horton NJ, Kleinman KP. Much ado about nothing: a comparison ofmissing datamethods and software to fit incomplete data regression models. Am Stat. 2007;61(1):79-90.
-
(2007)
Am Stat.
, vol.61
, Issue.1
, pp. 79-90
-
-
Horton, N.J.1
Kleinman, K.P.2
-
6
-
-
0038479971
-
The Collaborative Perinatal Project: Lessons and legacy
-
Hardy JB. The Collaborative Perinatal Project: lessons and legacy. Ann Epidemiol. 2003;13(5):303-311.
-
(2003)
Ann Epidemiol.
, vol.13
, Issue.5
, pp. 303-311
-
-
Hardy, J.B.1
-
7
-
-
85042928346
-
Principled approaches to missing data in epidemiologic studies
-
Perkins NJ, Cole SR, Harel O, et al. Principled approaches to missing data in epidemiologic studies. Am J Epidemiol. 2018; 187(3):568-575.
-
(2018)
Am J Epidemiol.
, vol.187
, Issue.3
, pp. 568-575
-
-
Perkins, N.J.1
Cole, S.R.2
Harel, O.3
-
8
-
-
84944215477
-
Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression
-
Bartlett JW, Harel O, Carpenter JR. Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression. Am J Epidemiol. 2015;182(8):730-736.
-
(2015)
Am J Epidemiol.
, vol.182
, Issue.8
, pp. 730-736
-
-
Bartlett, J.W.1
Harel, O.2
Carpenter, J.R.3
-
11
-
-
77249147857
-
Multiple imputation for missing data: Fully conditional specification versus multivariate normal imputation
-
Lee KJ, Carlin JB. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Am J Epidemiol. 2010;171(5):624-632.
-
(2010)
Am J Epidemiol.
, vol.171
, Issue.5
, pp. 624-632
-
-
Lee, K.J.1
Carlin, J.B.2
-
13
-
-
0002344593
-
A multivariate technique formultiply imputing missing values using a series of regression models
-
Raghunathan, TE, Lepkowski, JM, van Hoewyk, J, et al. A multivariate technique formultiply imputing missing values using a series of regression models. SurvMethodol. 2001;27(1):85-95.
-
(2001)
SurvMethodol.
, vol.27
, Issue.1
, pp. 85-95
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
Van Hoewyk, J.3
-
14
-
-
34347407592
-
Multiple imputation of discrete and continuous data by fully conditional specification
-
van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16(3):219-242.
-
(2007)
Stat Methods Med Res.
, vol.16
, Issue.3
, pp. 219-242
-
-
Van Buuren, S.1
-
15
-
-
84952497143
-
Missing-data adjustments in large surveys
-
Little RJA. Missing-data adjustments in large surveys. J Bus Econ Stat. 1988;6(3):287-296.
-
(1988)
J Bus Econ Stat.
, vol.6
, Issue.3
, pp. 287-296
-
-
Little, R.J.A.1
-
16
-
-
0030207783
-
Partially parametric techniques for multiple imputation
-
Schenker N, Taylor JMG. Partially parametric techniques for multiple imputation. Comput Stat Data Anal. 1996;22(4):425-446.
-
(1996)
Comput Stat Data Anal.
, vol.22
, Issue.4
, pp. 425-446
-
-
Schenker, N.1
Taylor, J.M.G.2
-
17
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4):377-399.
-
(2011)
Stat Med.
, vol.30
, Issue.4
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
18
-
-
84900436271
-
Comparison of methods for imputing limited-range variables: A simulation study
-
Rodwell L, Lee KJ, Romaniuk H, et al. Comparison of methods for imputing limited-range variables: a simulation study. BMC Med Res Methodol. 2014;14:57.
-
(2014)
BMC Med Res Methodol.
, vol.14
, pp. 57
-
-
Rodwell, L.1
Lee, K.J.2
Romaniuk, H.3
-
19
-
-
0000125534
-
Sample selection bias as a specification error
-
Heckman J. Sample selection bias as a specification error. Econometrica. 1979;47:153-161.
-
(1979)
Econometrica.
, vol.47
, pp. 153-161
-
-
Heckman, J.1
-
20
-
-
4243828610
-
Informative drop-out in longitudinal data analysis [with discussion]
-
Diggle P, Kenward MG. Informative drop-out in longitudinal data analysis [with discussion]. Appl Stat. 1994;43(1):49-93.
-
(1994)
Appl Stat.
, vol.43
, Issue.1
, pp. 49-93
-
-
Diggle, P.1
Kenward, M.G.2
-
21
-
-
21144483152
-
Pattern-mixture models for multivariate incomplete data
-
Little RJA. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc. 1993;88(421):125-134.
-
(1993)
J Am Stat Assoc.
, vol.88
, Issue.421
, pp. 125-134
-
-
Little, R.J.A.1
-
22
-
-
77956890002
-
A class of pattern-mixture models for normal incomplete data
-
Little RJA. A class of pattern-mixture models for normal incomplete data. Biometrika. 1994;81(3):471-483.
-
(1994)
Biometrika.
, vol.81
, Issue.3
, pp. 471-483
-
-
Little, R.J.A.1
-
23
-
-
84950452119
-
Modeling the drop-out mechanism in repeatedmeasures studies
-
Little RJA. Modeling the drop-out mechanism in repeatedmeasures studies. J Am Stat Assoc. 1995;90(431):1112-1121.
-
(1995)
J Am Stat Assoc.
, vol.90
, Issue.431
, pp. 1112-1121
-
-
Little, R.J.A.1
-
24
-
-
0023921412
-
Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
-
Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics. 1988;44:175-188.
-
(1988)
Biometrics.
, vol.44
, pp. 175-188
-
-
Wu, M.C.1
Carroll, R.J.2
-
25
-
-
85042933363
-
Inverse-probabilityweighted estimation for monotone and nonmonotone missing data
-
Sun BL, Perkins NJ, Cole SR, et al. Inverse-probabilityweighted estimation for monotone and nonmonotone missing data. Am J Epidemiol. 2018;187(3):585-591.
-
(2018)
Am J Epidemiol.
, vol.187
, Issue.3
, pp. 585-591
-
-
Sun, B.L.1
Perkins, N.J.2
Cole, S.R.3
-
26
-
-
84936853890
-
A test of missing completely at random for multivariate data with missing values
-
Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc. 1988, 83(404):1198-1202.
-
(1988)
J Am Stat Assoc.
, vol.83
, Issue.404
, pp. 1198-1202
-
-
Little, R.J.A.1
-
30
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins LM, Schafer JL, Kam CM. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods. 2001;6(4):330-351.
-
(2001)
Psychol Methods.
, vol.6
, Issue.4
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.M.3
-
31
-
-
84878998135
-
Addressing missing data mechanism uncertainty using multiple-model multiple imputation: Application to a longitudinal clinical trial
-
Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. Ann Appl Stat. 2012;6(4):1814-1837.
-
(2012)
Ann Appl Stat.
, vol.6
, Issue.4
, pp. 1814-1837
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
-
32
-
-
84903820681
-
Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: Application to a smoking cessation trial
-
Siddique J, Harel O, Crespi CM, et al. Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: application to a smoking cessation trial. Stat Med. 2014;33(17):3013-3028.
-
(2014)
Stat Med.
, vol.33
, Issue.17
, pp. 3013-3028
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
-
33
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B. 1977;39(1):1-38.
-
(1977)
J R Stat Soc ser B.
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
35
-
-
2442736478
-
Small-sample degrees of freedom with multiple imputation
-
Barnard J, Rubin DB. Small-sample degrees of freedom with multiple imputation. Biometrika. 1999;86(4):948-955.
-
(1999)
Biometrika.
, vol.86
, Issue.4
, pp. 948-955
-
-
Barnard, J.1
Rubin, D.B.2
-
36
-
-
0037811739
-
A degrees-of-freedom approximation in multiple imputation
-
Lipsitz S, Parzen M, Zhao LP. A degrees-of-freedom approximation in multiple imputation. J Stat Comput Simul. 2002;72(4):309-318.
-
(2002)
J Stat Comput Simul.
, vol.72
, Issue.4
, pp. 309-318
-
-
Lipsitz, S.1
Parzen, M.2
Zhao, L.P.3
-
37
-
-
34548452163
-
Small-sample degrees of freedom for multicomponent significance tests with multiple imputation for missing data
-
Reiter JP. Small-sample degrees of freedom for multicomponent significance tests with multiple imputation for missing data. Biometrika. 2007;94(2):502-508.
-
(2007)
Biometrika.
, vol.94
, Issue.2
, pp. 502-508
-
-
Reiter, J.P.1
-
38
-
-
80053977924
-
A closer examination of three smallsample approximations to the multiple-imputation degrees of freedom
-
Wagstaff DA, Harel O. A closer examination of three smallsample approximations to the multiple-imputation degrees of freedom. Stata J. 2011;11(3):403-419.
-
(2011)
Stata J.
, vol.11
, Issue.3
, pp. 403-419
-
-
Wagstaff, D.A.1
Harel, O.2
-
39
-
-
85042936484
-
-
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011
-
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
-
-
-
-
40
-
-
85042908969
-
-
SAS Institute Inc. SAS/STAT Software, Version 9.1. Cary, NC: SAS Institute Inc.; 2003
-
SAS Institute Inc. SAS/STAT Software, Version 9.1. Cary, NC: SAS Institute Inc.; 2003.
-
-
-
-
41
-
-
85042932711
-
-
StataCorp LP. Stata Data Analysis Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011
-
StataCorp LP. Stata Data Analysis Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011.
-
-
-
-
42
-
-
33845210459
-
Inferences on missing information under multiple imputation and two-stage multiple imputation
-
Harel O. Inferences on missing information under multiple imputation and two-stage multiple imputation. Stat Method. 2007;4:75-89.
-
(2007)
Stat Method.
, vol.4
, pp. 75-89
-
-
Harel, O.1
-
43
-
-
45149109361
-
Outfluence\-The impact of missing values
-
Harel O. Outfluence\-The impact of missing values. Model Assist Stat Appl. 2008;3:161-168.
-
(2008)
Model Assist Stat Appl.
, vol.3
, pp. 161-168
-
-
Harel, O.1
-
44
-
-
70249149311
-
Inferences on the outfluence-how do missing values impact your analysis?
-
Harel O, Stratton J. Inferences on the outfluence-how do missing values impact your analysis? Commun Stat Theory Methods. 2009;38(16-17):2884-2898.
-
(2009)
Commun Stat Theory Methods.
, vol.38
, Issue.16-17
, pp. 2884-2898
-
-
Harel, O.1
Stratton, J.2
-
45
-
-
0017133178
-
Inference and missing data
-
Rubin DB. Inference and missing data. Biometrika. 1976; 63(3):581-592.
-
(1976)
Biometrika.
, vol.63
, Issue.3
, pp. 581-592
-
-
Rubin, D.B.1
-
47
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. 2007;8(3):206-213.
-
(2007)
Prev Sci.
, vol.8
, Issue.3
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
48
-
-
54049109688
-
What improves with increased missing data imputations?
-
Bodner TE. What improves with increased missing data imputations? Struct Equ Modeling. 2008;15(4):651-675.
-
(2008)
Struct Equ Modeling.
, vol.15
, Issue.4
, pp. 651-675
-
-
Bodner, T.E.1
-
49
-
-
0242710940
-
A potential for bias when rounding in multiple imputation
-
Horton NJ, Lipsitz SR, Parzen M. A potential for bias when rounding in multiple imputation. Am Stat. 2003;57(4): 229-232.
-
(2003)
Am Stat.
, vol.57
, Issue.4
, pp. 229-232
-
-
Horton, N.J.1
Lipsitz, S.R.2
Parzen, M.3
-
50
-
-
33847711413
-
Robustness of a multivariate normal approximation for imputation of incomplete binary data
-
Bernaards CA, Belin TR, Schafer JL. Robustness of a multivariate normal approximation for imputation of incomplete binary data. Stat Med. 2007;26(6):1368-1382.
-
(2007)
Stat Med.
, vol.26
, Issue.6
, pp. 1368-1382
-
-
Bernaards, C.A.1
Belin, T.R.2
Schafer, J.L.3
-
51
-
-
63649163010
-
A preliminary study of active compared with passive imputation of missing body mass index values among non-Hispanic white youths
-
Wagstaff DA, Kranz S, Harel O. A preliminary study of active compared with passive imputation of missing body mass index values among non-Hispanic white youths. Am J Clin Nutr. 2009;89(4):1025-1030.
-
(2009)
Am J Clin Nutr.
, vol.89
, Issue.4
, pp. 1025-1030
-
-
Wagstaff, D.A.1
Kranz, S.2
Harel, O.3
-
52
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input
-
Meng XL. Multiple-imputation inferences with uncongenial sources of input. Stat Sci. 1994;9(4):538-558.
-
(1994)
Stat Sci.
, vol.9
, Issue.4
, pp. 538-558
-
-
Meng, X.L.1
|