메뉴 건너뛰기




Volumn 187, Issue 3, 2018, Pages 568-575

Principled Approaches to Missing Data in Epidemiologic Studies

Author keywords

bias (epidemiology); complete case analysis; inverse probability weighting; missing data; multiple imputation

Indexed keywords

ABORTION; ANALYTICAL METHOD; CONFIDENCE INTERVAL; DATA ASSIMILATION; EPIDEMIOLOGY; HEALTH RISK; INVERSE ANALYSIS; LITERATURE REVIEW; POLICY IMPLEMENTATION; PROBABILITY; RISK FACTOR; SMOKE;

EID: 85042928346     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwx348     Document Type: Article
Times cited : (184)

References (33)
  • 1
    • 84867183673 scopus 로고    scopus 로고
    • The prevention and treatment of missing data in clinical trials
    • Little RJ, D'Agostino R, Cohen ML, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012; 367(14):1355-1360.
    • (2012) N Engl J Med. , vol.367 , Issue.14 , pp. 1355-1360
    • Little, R.J.1    D'Agostino, R.2    Cohen, M.L.3
  • 2
    • 84864876506 scopus 로고    scopus 로고
    • Missing data: A systematic review of how they are reported and handled
    • Eekhout I, de Boer RM, Twisk JW, et al. Missing data: a systematic review of how they are reported and handled. Epidemiology. 2012;23(5):729-732.
    • (2012) Epidemiology. , vol.23 , Issue.5 , pp. 729-732
    • Eekhout, I.1    De Boer, R.M.2    Twisk, J.W.3
  • 3
    • 84872506043 scopus 로고    scopus 로고
    • Milling data: Should we c?Re?
    • Harel O, Boyko J. Milling data: should we care? Am J Public Health. 2013;103(2):200-201.
    • (2013) Am J Public Health. , vol.103 , Issue.2 , pp. 200-201
    • Harel, O.1    Boyko, J.2
  • 4
    • 49449091081 scopus 로고    scopus 로고
    • Use of multiple imputation in the epidemiologic literature
    • Klebanoff MA, Cole SR. Use of multiple imputation in the epidemiologic literature. Am J Epidemiol. 2008;168(4): 355-357.
    • (2008) Am J Epidemiol. , vol.168 , Issue.4 , pp. 355-357
    • Klebanoff, M.A.1    Cole, S.R.2
  • 5
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
    • Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
    • (2009) BMJ , vol.338 , pp. b2393
    • Sterne, J.A.1    White, I.R.2    Carlin, J.B.3
  • 6
    • 65249094801 scopus 로고    scopus 로고
    • Multiple imputation with large data sets: A case study of the Children's Mental Health Initiative
    • Stuart EA, Azur M, Frangakis C, et al. Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. Am J Epidemiol. 2009;169(9):1133-1139.
    • (2009) Am J Epidemiol. , vol.169 , Issue.9 , pp. 1133-1139
    • Stuart, E.A.1    Azur, M.2    Frangakis, C.3
  • 7
    • 33748530614 scopus 로고    scopus 로고
    • Imputation of missing values is superior to complete case analysis and the missing-indicator method inmultivariable diagnostic research: A clinical example
    • van der Heijden GJ, Donders AR, Stijnen T, et al. Imputation of missing values is superior to complete case analysis and the missing-indicator method inmultivariable diagnostic research: a clinical example. J Clin Epidemiol. 2006;59(10):1102-1109.
    • (2006) J Clin Epidemiol. , vol.59 , Issue.10 , pp. 1102-1109
    • Van Der Heijden, G.J.1    Donders, A.R.2    Stijnen, T.3
  • 8
    • 83655163679 scopus 로고    scopus 로고
    • Berkson's bias, selection bias, and missing data
    • Westreich D. Berkson's bias, selection bias, and missing data. Epidemiology. 2012;23(1):159-164.
    • (2012) Epidemiology. , vol.23 , Issue.1 , pp. 159-164
    • Westreich, D.1
  • 9
    • 25144472336 scopus 로고    scopus 로고
    • Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals
    • Wood AM, White IR, Thompson SG. Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals. Clin Trials. 2004; 1(4):368-376.
    • (2004) Clin Trials. , vol.1 , Issue.4 , pp. 368-376
    • Wood, A.M.1    White, I.R.2    Thompson, S.G.3
  • 10
    • 84865164498 scopus 로고    scopus 로고
    • Are we missing the importance of missing values in HIV prevention randomized clinical trials? Review and recommendations
    • Harel O, Pellowski J, Kalichman S. Are we missing the importance of missing values in HIV prevention randomized clinical trials? Review and recommendations. AIDS Behav. 2012;16(6):1382-1393.
    • (2012) AIDS Behav. , vol.16 , Issue.6 , pp. 1382-1393
    • Harel, O.1    Pellowski, J.2    Kalichman, S.3
  • 11
    • 0004093524 scopus 로고    scopus 로고
    • Thousand Oaks, CA: SAGE Publishing
    • Allison PD. Missing Data. Thousand Oaks, CA: SAGE Publishing; 2002.
    • (2002) Missing Data
    • Allison, P.D.1
  • 13
    • 0038479971 scopus 로고    scopus 로고
    • The Collaborative Perinatal Project: Lessons and legacy
    • Hardy JB. The Collaborative Perinatal Project: lessons and legacy. Ann Epidemiol. 2003;13(5):303-311.
    • (2003) Ann Epidemiol. , vol.13 , Issue.5 , pp. 303-311
    • Hardy, J.B.1
  • 14
    • 85042938516 scopus 로고    scopus 로고
    • Multiple imputation for incomplete data in epidemiologic studies
    • Harel O, Mitchell EM, Perkins NJ, et al. Multiple imputation for incomplete data in epidemiologic studies. Am J Epidemiol. 2018;187(3):576-584.
    • (2018) Am J Epidemiol. , vol.187 , Issue.3 , pp. 576-584
    • Harel, O.1    Mitchell, E.M.2    Perkins, N.J.3
  • 15
    • 85042933363 scopus 로고    scopus 로고
    • Inverse-probabilityweighted estimation for monotone and nonmonotone missing data
    • Sun BL, Perkins NJ, Cole SR, et al. Inverse-probabilityweighted estimation for monotone and nonmonotone missing data. Am J Epidemiol. 2018;187(3):585-591.
    • (2018) Am J Epidemiol. , vol.187 , Issue.3 , pp. 585-591
    • Sun, B.L.1    Perkins, N.J.2    Cole, S.R.3
  • 16
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika. 1976; 63(3):581-590.
    • (1976) Biometrika. , vol.63 , Issue.3 , pp. 581-590
    • Rubin, D.B.1
  • 20
    • 84878998135 scopus 로고    scopus 로고
    • Addressing missing data mechanism uncertainty using multiple-model multiple imputation: Application to a longitudinal clinical trial
    • Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. Ann Appl Stat. 2012;6(4):1814-1837.
    • (2012) Ann Appl Stat. , vol.6 , Issue.4 , pp. 1814-1837
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 22
    • 84861808024 scopus 로고    scopus 로고
    • Using causal diagrams to guide analysis in missing data problems
    • Daniel RM, Kenward MG, Cousens SN, et al. Using causal diagrams to guide analysis in missing data problems. Stat Methods Med Res. 2012;21(3):243-256.
    • (2012) Stat Methods Med Res. , vol.21 , Issue.3 , pp. 243-256
    • Daniel, R.M.1    Kenward, M.G.2    Cousens, S.N.3
  • 24
    • 85042910629 scopus 로고    scopus 로고
    • (University of Michigan Department of Biostatistics Working Paper Series, working paper 98). Ann Arbor, MI: University of Michigan. Accessed December 15, 2015.
    • Little RJ, Zanganeh SZ. Missing at random and ignorability for inferences about subsets of parameters with missing data. (University of Michigan Department of Biostatistics Working Paper Series, working paper 98). Ann Arbor, MI: University of Michigan; 2013. http://biostats.bepress.com/umichbiostat/ paper98/. Accessed December 15, 2015.
    • (2013) Missing at Random and Ignorability for Inferences about Subsets of Parameters with Missing Data
    • Little, R.J.1    Zanganeh, S.Z.2
  • 25
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little RJ. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc. 1993;88(421):125-134.
    • (1993) J Am Stat Assoc. , vol.88 , Issue.421 , pp. 125-134
    • Little, R.J.1
  • 26
    • 84944215477 scopus 로고    scopus 로고
    • Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression
    • Bartlett JW, Harel O, Carpenter JR. Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression. Am J Epidemiol. 2015;182(8):730-736.
    • (2015) Am J Epidemiol. , vol.182 , Issue.8 , pp. 730-736
    • Bartlett, J.W.1    Harel, O.2    Carpenter, J.R.3
  • 28
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc. 1996;91(434):473-489.
    • (1996) J Am Stat Assoc. , vol.91 , Issue.434 , pp. 473-489
    • Rubin, D.B.1
  • 29
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors are not always observed
    • Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc. 1994;89(427):846-866.
    • (1994) J Am Stat Assoc. , vol.89 , Issue.427 , pp. 846-866
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 31
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins JM, Wang N. Inference for imputation estimators. Biometrika. 2000;87(1):113-124.
    • (2000) Biometrika. , vol.87 , Issue.1 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 32
    • 0011936489 scopus 로고    scopus 로고
    • Large-sample theory for parametric multiple imputation procedures
    • Wang N, Robins JM. Large-sample theory for parametric multiple imputation procedures. Biometrika. 1998;85(4): 935-948.
    • (1998) Biometrika. , vol.85 , Issue.4 , pp. 935-948
    • Wang, N.1    Robins, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.