메뉴 건너뛰기




Volumn 33, Issue 17, 2014, Pages 3013-3028

Binary variable multiple-model multiple imputation to address missing data mechanism uncertainty: Application to a smoking cessation trial

Author keywords

Binary data; NMAR; Nonignorable; Not missing at random

Indexed keywords

ARTICLE; BINARY VARIABLE; CALCULATION; CONTROLLED STUDY; DATA ANALYSIS; HUMAN; MATHEMATICAL COMPUTING; SIMULATION; SMOKING CESSATION; STATISTICAL CONCEPTS; STATISTICAL DISTRIBUTION; STATISTICAL MODEL; COMPUTER SIMULATION; PROCEDURES; UNCERTAINTY;

EID: 84903820681     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6137     Document Type: Article
Times cited : (30)

References (31)
  • 1
    • 64049086102 scopus 로고    scopus 로고
    • Why assigning ongoing tobacco use is not necessarily a conservative approach to handling missing tobacco cessation outcomes
    • Nelson DB, Partin MR, Fu SS, Joseph AM, An LC. Why assigning ongoing tobacco use is not necessarily a conservative approach to handling missing tobacco cessation outcomes. Nicotine & Tobacco Research 2009; 11:77-83.
    • (2009) Nicotine & Tobacco Research , vol.11 , pp. 77-83
    • Nelson, D.B.1    Partin, M.R.2    Fu, S.S.3    Joseph, A.M.4    An, L.C.5
  • 2
    • 80052310453 scopus 로고    scopus 로고
    • Alternative approaches to assessing intervention effectiveness in randomized trials: application in a colorectal cancer screening study
    • Maxwell AE, Crespi CM, Danao LL, Antonio C, Garcia GM, Bastani R. Alternative approaches to assessing intervention effectiveness in randomized trials: application in a colorectal cancer screening study. Cancer Causes and Control 2011; 22:1233-1241.
    • (2011) Cancer Causes and Control , vol.22 , pp. 1233-1241
    • Maxwell, A.E.1    Crespi, C.M.2    Danao, L.L.3    Antonio, C.4    Garcia, G.M.5    Bastani, R.6
  • 3
    • 34548549316 scopus 로고    scopus 로고
    • Analysis of binary outcomes with missing data: missing=smoking, last observation carried forward, and a little mutliple imputation
    • Hedeker D, Mermelstein RJ, Demirtas H. Analysis of binary outcomes with missing data: missing=smoking, last observation carried forward, and a little mutliple imputation. Addiction 2007; 102:1564-1573.
    • (2007) Addiction , vol.102 , pp. 1564-1573
    • Hedeker, D.1    Mermelstein, R.J.2    Demirtas, H.3
  • 5
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • Demirtas H, Schafer JL.On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 2003; 22:2553-2575.
    • (2003) Statistics in Medicine , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 6
    • 23244447184 scopus 로고    scopus 로고
    • Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out
    • Demirtas H. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 2005; 24:2345-2363.
    • (2005) Statistics in Medicine , vol.24 , pp. 2345-2363
    • Demirtas, H.1
  • 9
    • 39549121035 scopus 로고    scopus 로고
    • Allowing for uncertainty due to missing data in meta-analysis-part 1: two-stage methods
    • White IR, Higgins JPT, Wood AM. Allowing for uncertainty due to missing data in meta-analysis-part 1: two-stage methods. Statistics in Medicine 2008; 27(5):711-727.
    • (2008) Statistics in Medicine , vol.27 , Issue.5 , pp. 711-727
    • White, I.R.1    Higgins, J.P.T.2    Wood, A.M.3
  • 10
    • 63149124918 scopus 로고    scopus 로고
    • A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts
    • Kaciroti NA, Schork MA, Raghunathan T, Julius S. A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts. Statistics in Medicine 2009; 28:572-585.
    • (2009) Statistics in Medicine , vol.28 , pp. 572-585
    • Kaciroti, N.A.1    Schork, M.A.2    Raghunathan, T.3    Julius, S.4
  • 12
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins LM, Schafer JL, Kam C. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 2001; 6:330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.3
  • 13
    • 10944236293 scopus 로고    scopus 로고
    • Simulation driven inferences for multiply imputed longitudinal datasets
    • Demirtas H. Simulation driven inferences for multiply imputed longitudinal datasets. Statistica Neerlandica 2004; 58:466-482.
    • (2004) Statistica Neerlandica , vol.58 , pp. 466-482
    • Demirtas, H.1
  • 14
    • 34347398256 scopus 로고    scopus 로고
    • Sensitivity analysis after multiple imputation under missing at random: a weighting approach
    • Carpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Statistical Methods in Medical Research 2007; 16:259-275.
    • (2007) Statistical Methods in Medical Research , vol.16 , pp. 259-275
    • Carpenter, J.R.1    Kenward, M.G.2    White, I.R.3
  • 15
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999; 18:681-694.
    • (1999) Statistics in Medicine , vol.18 , pp. 681-694
    • van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 16
    • 84878998135 scopus 로고    scopus 로고
    • Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial
    • Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. Annals of Applied Statistics 2013; 6:1814-1837.
    • (2013) Annals of Applied Statistics , vol.6 , pp. 1814-1837
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 17
    • 0001354633 scopus 로고
    • Formalizing subject notions about the effect of nonrespondents in sample surveys
    • Rubin DB. Formalizing subject notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 1977; 72:538-543.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 20
    • 84903821322 scopus 로고    scopus 로고
    • Nested Multiple Imputation. Ph.D. Thesis, Department of Statistics, Harvard University, Cambridge, MA
    • Shen ZJ. Nested Multiple Imputation. Ph.D. Thesis, Department of Statistics, Harvard University, Cambridge, MA, 2000.
    • (2000)
    • Shen, Z.J.1
  • 21
    • 33845210459 scopus 로고    scopus 로고
    • Inferences on missing information under multiple imputation and two-stage multiple imputation
    • Harel O. Inferences on missing information under multiple imputation and two-stage multiple imputation. Statistical Methodology 2007; 4:75-89.
    • (2007) Statistical Methodology , vol.4 , pp. 75-89
    • Harel, O.1
  • 24
    • 84903816966 scopus 로고    scopus 로고
    • Supplement to: Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial, [Accessed on 17 December 2013].
    • Siddique J, Harel O, Crespi CM. Supplement to: Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial, 2013. http://lib.stat.cmu.edu/aoas/555 [Accessed on 17 December 2013].
    • (2013)
    • Siddique, J.1    Harel, O.2    Crespi, C.M.3
  • 25
    • 70249149311 scopus 로고    scopus 로고
    • Inferences on the outfluence-how do missing values impact your analysis?
    • Harel O, Stratton J. Inferences on the outfluence-how do missing values impact your analysis?Communications in Statistics-Theory and Methods 2009; 38:2884-2898.
    • (2009) Communications in Statistics-Theory and Methods , vol.38 , pp. 2884-2898
    • Harel, O.1    Stratton, J.2
  • 26
    • 2942658011 scopus 로고    scopus 로고
    • Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes
    • Scharfstein DO, Daniels MJ, Robins JM. Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes. Biostatistics 2003; 4:495-512.
    • (2003) Biostatistics , vol.4 , pp. 495-512
    • Scharfstein, D.O.1    Daniels, M.J.2    Robins, J.M.3
  • 27
    • 0016264378 scopus 로고
    • Judgment under uncertainty: heuristics and biases
    • Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science 1974; 185:1124-1131.
    • (1974) Science , vol.185 , pp. 1124-1131
    • Tversky, A.1    Kahneman, D.2
  • 28
    • 63149149591 scopus 로고    scopus 로고
    • Subjective prior distributions for modeling longitudinal continuous outcomes with non-ignorable dropout
    • Paddock SM, Ebener P. Subjective prior distributions for modeling longitudinal continuous outcomes with non-ignorable dropout. Statistics in Medicine 2009; 28:659-678.
    • (2009) Statistics in Medicine , vol.28 , pp. 659-678
    • Paddock, S.M.1    Ebener, P.2
  • 29
    • 34249281320 scopus 로고    scopus 로고
    • Eliciting and using expert opinions about dropout bias in randomized controlled trials
    • White IR, Carpenter J, Evans S, Schroter S. Eliciting and using expert opinions about dropout bias in randomized controlled trials. Clinical Trials 2007; 4:125-139.
    • (2007) Clinical Trials , vol.4 , pp. 125-139
    • White, I.R.1    Carpenter, J.2    Evans, S.3    Schroter, S.4
  • 30
    • 55549128556 scopus 로고    scopus 로고
    • Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data
    • Siddique J, Belin TR. Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data. Computational Statistics and Data Analysis 2008; 53:405-415.
    • (2008) Computational Statistics and Data Analysis , vol.53 , pp. 405-415
    • Siddique, J.1    Belin, T.R.2
  • 31
    • 75749126977 scopus 로고    scopus 로고
    • Missing data handling methods in medical device clinical trials
    • Yan X, Lee S, Li N. Missing data handling methods in medical device clinical trials. Journal of Biopharmaceutical Statistics 2009; 19(6):1085-1098.
    • (2009) Journal of Biopharmaceutical Statistics , vol.19 , Issue.6 , pp. 1085-1098
    • Yan, X.1    Lee, S.2    Li, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.