-
1
-
-
64049086102
-
Why assigning ongoing tobacco use is not necessarily a conservative approach to handling missing tobacco cessation outcomes
-
Nelson DB, Partin MR, Fu SS, Joseph AM, An LC. Why assigning ongoing tobacco use is not necessarily a conservative approach to handling missing tobacco cessation outcomes. Nicotine & Tobacco Research 2009; 11:77-83.
-
(2009)
Nicotine & Tobacco Research
, vol.11
, pp. 77-83
-
-
Nelson, D.B.1
Partin, M.R.2
Fu, S.S.3
Joseph, A.M.4
An, L.C.5
-
2
-
-
80052310453
-
Alternative approaches to assessing intervention effectiveness in randomized trials: application in a colorectal cancer screening study
-
Maxwell AE, Crespi CM, Danao LL, Antonio C, Garcia GM, Bastani R. Alternative approaches to assessing intervention effectiveness in randomized trials: application in a colorectal cancer screening study. Cancer Causes and Control 2011; 22:1233-1241.
-
(2011)
Cancer Causes and Control
, vol.22
, pp. 1233-1241
-
-
Maxwell, A.E.1
Crespi, C.M.2
Danao, L.L.3
Antonio, C.4
Garcia, G.M.5
Bastani, R.6
-
3
-
-
34548549316
-
Analysis of binary outcomes with missing data: missing=smoking, last observation carried forward, and a little mutliple imputation
-
Hedeker D, Mermelstein RJ, Demirtas H. Analysis of binary outcomes with missing data: missing=smoking, last observation carried forward, and a little mutliple imputation. Addiction 2007; 102:1564-1573.
-
(2007)
Addiction
, vol.102
, pp. 1564-1573
-
-
Hedeker, D.1
Mermelstein, R.J.2
Demirtas, H.3
-
5
-
-
0042066687
-
On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
-
Demirtas H, Schafer JL.On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 2003; 22:2553-2575.
-
(2003)
Statistics in Medicine
, vol.22
, pp. 2553-2575
-
-
Demirtas, H.1
Schafer, J.L.2
-
6
-
-
23244447184
-
Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out
-
Demirtas H. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 2005; 24:2345-2363.
-
(2005)
Statistics in Medicine
, vol.24
, pp. 2345-2363
-
-
Demirtas, H.1
-
9
-
-
39549121035
-
Allowing for uncertainty due to missing data in meta-analysis-part 1: two-stage methods
-
White IR, Higgins JPT, Wood AM. Allowing for uncertainty due to missing data in meta-analysis-part 1: two-stage methods. Statistics in Medicine 2008; 27(5):711-727.
-
(2008)
Statistics in Medicine
, vol.27
, Issue.5
, pp. 711-727
-
-
White, I.R.1
Higgins, J.P.T.2
Wood, A.M.3
-
10
-
-
63149124918
-
A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts
-
Kaciroti NA, Schork MA, Raghunathan T, Julius S. A Bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts. Statistics in Medicine 2009; 28:572-585.
-
(2009)
Statistics in Medicine
, vol.28
, pp. 572-585
-
-
Kaciroti, N.A.1
Schork, M.A.2
Raghunathan, T.3
Julius, S.4
-
11
-
-
33745669107
-
A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data
-
Kaciroti NA, Raghunathan TE, Schork MA, Clark NM, Gong M. A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data. Journal of the American Statistical Association 2006; 101:435-446.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 435-446
-
-
Kaciroti, N.A.1
Raghunathan, T.E.2
Schork, M.A.3
Clark, N.M.4
Gong, M.5
-
12
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins LM, Schafer JL, Kam C. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 2001; 6:330-351.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.3
-
13
-
-
10944236293
-
Simulation driven inferences for multiply imputed longitudinal datasets
-
Demirtas H. Simulation driven inferences for multiply imputed longitudinal datasets. Statistica Neerlandica 2004; 58:466-482.
-
(2004)
Statistica Neerlandica
, vol.58
, pp. 466-482
-
-
Demirtas, H.1
-
14
-
-
34347398256
-
Sensitivity analysis after multiple imputation under missing at random: a weighting approach
-
Carpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Statistical Methods in Medical Research 2007; 16:259-275.
-
(2007)
Statistical Methods in Medical Research
, vol.16
, pp. 259-275
-
-
Carpenter, J.R.1
Kenward, M.G.2
White, I.R.3
-
15
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999; 18:681-694.
-
(1999)
Statistics in Medicine
, vol.18
, pp. 681-694
-
-
van Buuren, S.1
Boshuizen, H.C.2
Knook, D.L.3
-
16
-
-
84878998135
-
Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial
-
Siddique J, Harel O, Crespi CM. Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial. Annals of Applied Statistics 2013; 6:1814-1837.
-
(2013)
Annals of Applied Statistics
, vol.6
, pp. 1814-1837
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
-
17
-
-
0001354633
-
Formalizing subject notions about the effect of nonrespondents in sample surveys
-
Rubin DB. Formalizing subject notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 1977; 72:538-543.
-
(1977)
Journal of the American Statistical Association
, vol.72
, pp. 538-543
-
-
Rubin, D.B.1
-
18
-
-
85046520855
-
Effects of social support and relapse prevention training as adjuncts to a televised smoking-cessation intervention
-
Gruder CL, Mermelstein RJ, Kirkendol S, Hedeker D, Wong SC, Schreckengost J, Warnecke RB, Burzette R, Miller TQ. Effects of social support and relapse prevention training as adjuncts to a televised smoking-cessation intervention. Journal of Consulting and Clinical Psychology 1993; 61:113-120.
-
(1993)
Journal of Consulting and Clinical Psychology
, vol.61
, pp. 113-120
-
-
Gruder, C.L.1
Mermelstein, R.J.2
Kirkendol, S.3
Hedeker, D.4
Wong, S.C.5
Schreckengost, J.6
Warnecke, R.B.7
Burzette, R.8
Miller, T.Q.9
-
20
-
-
84903821322
-
-
Nested Multiple Imputation. Ph.D. Thesis, Department of Statistics, Harvard University, Cambridge, MA
-
Shen ZJ. Nested Multiple Imputation. Ph.D. Thesis, Department of Statistics, Harvard University, Cambridge, MA, 2000.
-
(2000)
-
-
Shen, Z.J.1
-
21
-
-
33845210459
-
Inferences on missing information under multiple imputation and two-stage multiple imputation
-
Harel O. Inferences on missing information under multiple imputation and two-stage multiple imputation. Statistical Methodology 2007; 4:75-89.
-
(2007)
Statistical Methodology
, vol.4
, pp. 75-89
-
-
Harel, O.1
-
24
-
-
84903816966
-
-
Supplement to: Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial, [Accessed on 17 December 2013].
-
Siddique J, Harel O, Crespi CM. Supplement to: Addressing missing data mechanism uncertainty using multiple-model multiple imputation: application to a longitudinal clinical trial, 2013. http://lib.stat.cmu.edu/aoas/555 [Accessed on 17 December 2013].
-
(2013)
-
-
Siddique, J.1
Harel, O.2
Crespi, C.M.3
-
25
-
-
70249149311
-
Inferences on the outfluence-how do missing values impact your analysis?
-
Harel O, Stratton J. Inferences on the outfluence-how do missing values impact your analysis?Communications in Statistics-Theory and Methods 2009; 38:2884-2898.
-
(2009)
Communications in Statistics-Theory and Methods
, vol.38
, pp. 2884-2898
-
-
Harel, O.1
Stratton, J.2
-
26
-
-
2942658011
-
Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes
-
Scharfstein DO, Daniels MJ, Robins JM. Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes. Biostatistics 2003; 4:495-512.
-
(2003)
Biostatistics
, vol.4
, pp. 495-512
-
-
Scharfstein, D.O.1
Daniels, M.J.2
Robins, J.M.3
-
27
-
-
0016264378
-
Judgment under uncertainty: heuristics and biases
-
Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science 1974; 185:1124-1131.
-
(1974)
Science
, vol.185
, pp. 1124-1131
-
-
Tversky, A.1
Kahneman, D.2
-
28
-
-
63149149591
-
Subjective prior distributions for modeling longitudinal continuous outcomes with non-ignorable dropout
-
Paddock SM, Ebener P. Subjective prior distributions for modeling longitudinal continuous outcomes with non-ignorable dropout. Statistics in Medicine 2009; 28:659-678.
-
(2009)
Statistics in Medicine
, vol.28
, pp. 659-678
-
-
Paddock, S.M.1
Ebener, P.2
-
29
-
-
34249281320
-
Eliciting and using expert opinions about dropout bias in randomized controlled trials
-
White IR, Carpenter J, Evans S, Schroter S. Eliciting and using expert opinions about dropout bias in randomized controlled trials. Clinical Trials 2007; 4:125-139.
-
(2007)
Clinical Trials
, vol.4
, pp. 125-139
-
-
White, I.R.1
Carpenter, J.2
Evans, S.3
Schroter, S.4
-
30
-
-
55549128556
-
Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data
-
Siddique J, Belin TR. Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data. Computational Statistics and Data Analysis 2008; 53:405-415.
-
(2008)
Computational Statistics and Data Analysis
, vol.53
, pp. 405-415
-
-
Siddique, J.1
Belin, T.R.2
-
31
-
-
75749126977
-
Missing data handling methods in medical device clinical trials
-
Yan X, Lee S, Li N. Missing data handling methods in medical device clinical trials. Journal of Biopharmaceutical Statistics 2009; 19(6):1085-1098.
-
(2009)
Journal of Biopharmaceutical Statistics
, vol.19
, Issue.6
, pp. 1085-1098
-
-
Yan, X.1
Lee, S.2
Li, N.3
|