메뉴 건너뛰기




Volumn 6, Issue 4, 2012, Pages 1814-1837

Addressing missing data mechanism uncertainty using multiple-model multiple imputation: Application to a longitudinal clinical trial

Author keywords

Missing not at random; MNAR; NMAR; Nonignorable; Not missing at random

Indexed keywords


EID: 84878998135     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/12-AOAS555     Document Type: Article
Times cited : (42)

References (49)
  • 1
    • 76249118894 scopus 로고    scopus 로고
    • Missing data assumptions and methods in a smoking cessation study
    • Barnes, S. A., Larsen, M. D., Schroeder, D., Hanson, A. and Decker, P. A. (2010). Missing data assumptions and methods in a smoking cessation study. Addiction 105 431-437.
    • (2010) Addiction , vol.105 , pp. 431-437
    • Barnes, S.A.1    Larsen, M.D.2    Schroeder, D.3    Hanson, A.4    Decker, P.A.5
  • 2
    • 21144462737 scopus 로고
    • Hierarchical logistic regression models for imputation of unresolved enumeration status in undercount estimation (with discussion)
    • Belin, T. R., Diffendal, G. J., Mack, S., Rubin, D. B., Schafer, J. L. and Zaslavsky, A. M. (1993). Hierarchical logistic regression models for imputation of unresolved enumeration status in undercount estimation (with discussion). J. Amer. Statist. Assoc. 88 1149-1166.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 1149-1166
    • Belin, T.R.1    Diffendal, G.J.2    Mack, S.3    Rubin, D.B.4    Schafer, J.L.5    Zaslavsky, A.M.6
  • 3
    • 0019467244 scopus 로고
    • The efficacy of cognitive therapy in depression: A treatment trial using cognitive therapy and pharmacotherapy, each alone and in combination
    • Blackburn, I. M., Bishop, S., Glen, A. I., Whalley, L. J. and Christie, J. E. (1981). The efficacy of cognitive therapy in depression: A treatment trial using cognitive therapy and pharmacotherapy, each alone and in combination. Br. J. Psychiatry 139 181-189.
    • (1981) Br. J. Psychiatry , vol.139 , pp. 181-189
    • Blackburn, I.M.1    Bishop, S.2    Glen, A.I.3    Whalley, L.J.4    Christie, J.E.5
  • 4
    • 34347398256 scopus 로고    scopus 로고
    • Sensitivity analysis after multiple imputation under missing at random: A weighting approach
    • MR2371009
    • Carpenter, J. R., Kenward, M. G. andWhite, I. R. (2007). Sensitivity analysis after multiple imputation under missing at random: A weighting approach. Stat. Methods Med. Res. 16 259-275. MR2371009
    • (2007) Stat. Methods Med. Res. , vol.16 , pp. 259-275
    • Carpenter, J.R.1    Kenward, M.G.2    White, I.R.3
  • 5
    • 0003396332 scopus 로고
    • 3rd ed. Wiley, New York-London-Sydney. MR0474575
    • Cochran, W. G. (1977). Sampling Techniques, 3rd ed. Wiley, New York-London-Sydney. MR0474575
    • (1977) Sampling Techniques
    • Cochran, W.G.1
  • 6
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L. and Kam, C. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 6 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.3
  • 8
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient patternmixture models for non-ignorable drop-out
    • Demirtas, H. and Schafer, J. L. (2003). On the performance of random-coefficient patternmixture models for non-ignorable drop-out. Stat. Med. 22 2553-2575.
    • (2003) Stat. Med. , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 10
    • 0002337950 scopus 로고    scopus 로고
    • Model-based inference for categorical survey data subject to non-ignorable non-response
    • MR1625664
    • Forster, J. J. and Smith, P. W. F. (1998). Model-based inference for categorical survey data subject to non-ignorable non-response. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 57-70. MR1625664
    • (1998) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.60 , pp. 57-70
    • Forster, J.J.1    Smith, P.W.F.2
  • 11
    • 33845210459 scopus 로고    scopus 로고
    • Inferences on missing information under multiple imputation and two-stage multiple imputation
    • MR2339010
    • Harel, O. (2007). Inferences on missing information under multiple imputation and two-stage multiple imputation. Stat. Methodol. 4 75-89. MR2339010
    • (2007) Stat. Methodol. , vol.4 , pp. 75-89
    • Harel, O.1
  • 12
    • 45149109361 scopus 로고    scopus 로고
    • Outfluence-the impact of missing values
    • MR2518797
    • Harel, O. (2008). Outfluence-the impact of missing values. Model Assist. Stat. Appl. 3 161-168. MR2518797
    • (2008) Model Assist. Stat. Appl. , vol.3 , pp. 161-168
    • Harel, O.1
  • 14
    • 70249149311 scopus 로고    scopus 로고
    • Inferences on the outfluence-how do missing values impact your analysis?
    • MR2568193
    • Harel, O. and Stratton, J. (2009). Inferences on the outfluence-how do missing values impact your analysis? Comm. Statist. Theory Methods 38 2884-2898. MR2568193
    • (2009) Comm. Statist. Theory Methods , vol.38 , pp. 2884-2898
    • Harel, O.1    Stratton, J.2
  • 16
    • 60749123292 scopus 로고    scopus 로고
    • Missing data methods in longitudinal studies: A review
    • MR2495958
    • Ibrahim, J. G. and Molenberghs, G. (2009). Missing data methods in longitudinal studies: A review. TEST 18 1-43. MR2495958
    • (2009) TEST , vol.18 , pp. 1-43
    • Ibrahim, J.G.1    Molenberghs, G.2
  • 17
    • 33745669107 scopus 로고    scopus 로고
    • A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data: Evaluation of an asthma education program
    • MR2256165
    • Kaciroti, N. A., Raghunathan, T. E., Schork, M. A., Clark, N. M. andGong, M. (2006). A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data: Evaluation of an asthma education program. J. Amer. Statist. Assoc. 101 435-446. MR2256165
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 435-446
    • Kaciroti, N.A.1    Raghunathan, T.E.2    Schork, M.A.3    Clark, N.M.4    Gong, M.5
  • 19
    • 0035884199 scopus 로고    scopus 로고
    • A multiple imputation strategy for incomplete longitudinal data
    • Landrum, M. B. and Becker, M. P. (2001). A multiple imputation strategy for incomplete longitudinal data. Stat. Med. 20 2741-2760.
    • (2001) Stat. Med. , vol.20 , pp. 2741-2760
    • Landrum, M.B.1    Becker, M.P.2
  • 21
    • 0000106418 scopus 로고
    • Missing data imputation using the multivariate t distribution
    • MR1333132
    • Liu, C. (1995). Missing data imputation using the multivariate t distribution. J. Multivariate Anal. 53 139-158. MR1333132
    • (1995) J. Multivariate Anal. , vol.53 , pp. 139-158
    • Liu, C.1
  • 22
    • 0038504054 scopus 로고    scopus 로고
    • Treating depression in predominantly low-income young minority women: A randomized controlled trial
    • Miranda, J., Chung, J. Y., Green, B. L., Krupnick, J., Siddique, J., Revicki, D. A. and Belin, T. (2003). Treating depression in predominantly low-income young minority women: A randomized controlled trial. JAMA 290 57-65.
    • (2003) JAMA , vol.290 , pp. 57-65
    • Miranda, J.1    Chung, J.Y.2    Green, B.L.3    Krupnick, J.4    Siddique, J.5    Revicki, D.A.6    Belin, T.7
  • 23
    • 0035650307 scopus 로고    scopus 로고
    • Sensitivity analysis for incomplete contingency tables: The Slovenian plebiscite case
    • Molenberghs, G., Kenward, M. G. and Goetghebeur, E. (2001). Sensitivity analysis for incomplete contingency tables: The Slovenian plebiscite case. J. R. Stat. Soc. Ser. C. Appl. Stat. 50 15-29.
    • (2001) J. R. Stat. Soc. Ser. C. Appl. Stat. , vol.50 , pp. 15-29
    • Molenberghs, G.1    Kenward, M.G.2    Goetghebeur, E.3
  • 24
    • 28444468503 scopus 로고    scopus 로고
    • Sensitivity analysis of continuous incomplete longitudinal outcomes
    • MR2035862
    • Molenberghs, G., Thijs, H., Kenward, M. G. and Verbeke, G. (2003). Sensitivity analysis of continuous incomplete longitudinal outcomes. Stat. Neerl. 57 112-135. MR2035862
    • (2003) Stat. Neerl. , vol.57 , pp. 112-135
    • Molenberghs, G.1    Thijs, H.2    Kenward, M.G.3    Verbeke, G.4
  • 25
    • 63149149591 scopus 로고    scopus 로고
    • Subjective prior distributions for modeling longitudinal continuous outcomes with non-ignorable dropout
    • MR2655736
    • Paddock, S. M. and Ebener, P. (2009). Subjective prior distributions for modeling longitudinal continuous outcomes with non-ignorable dropout. Stat. Med. 28 659-678. MR2655736
    • (2009) Stat. Med. , vol.28 , pp. 659-678
    • Paddock, S.M.1    Ebener, P.2
  • 26
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J. M., Hoewyk, J. V. and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27 85-95.
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Hoewyk, J.V.3    Solenberger, P.4
  • 27
    • 0017133178 scopus 로고
    • Inference and missing data
    • MR0455196
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581-592. MR0455196
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 28
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of nonrespondents in sample surveys
    • MR0445668
    • Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. J. Amer. Statist. Assoc. 72 538-543. MR0445668
    • (1977) J. Amer. Statist. Assoc. , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 30
    • 0345241817 scopus 로고    scopus 로고
    • Nested multiple imputation of NMES via partially incompatible MCMC
    • MR2055518
    • Rubin, D. B. (2003). Nested multiple imputation of NMES via partially incompatible MCMC. Stat. Neerl. 57 3-18. MR2055518
    • (2003) Stat. Neerl. , vol.57 , pp. 3-18
    • Rubin, D.B.1
  • 31
    • 0025801348 scopus 로고
    • Multiple imputation in health-care databases: An overview and some applications
    • Rubin, D. B. and Schenker, N. (1991). Multiple imputation in health-care databases: An overview and some applications. Stat. Med. 10 585-598.
    • (1991) Stat. Med. , vol.10 , pp. 585-598
    • Rubin, D.B.1    Schenker, N.2
  • 32
    • 84950419706 scopus 로고
    • Handling "don't know" survey responses: The case of the Slovenian plebiscite
    • Rubin, D. B., Stern, H. S. and Vehovar, V. (1995). Handling "don't know" survey responses: The case of the Slovenian plebiscite. J. Amer. Statist. Assoc. 90 822-828.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 822-828
    • Rubin, D.B.1    Stern, H.S.2    Vehovar, V.3
  • 34
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L. andGraham, J. W. (2002). Missing data: Our view of the state of the art. Psychol. Methods 7 147-177.
    • (2002) Psychol. Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 35
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models
    • MR1731478
    • Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models. J. Amer. Statist. Assoc. 94 1096-1146. MR1731478
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1096-1146
    • Scharfstein, D.O.1    Rotnitzky, A.2    Robins, J.M.3
  • 36
    • 0030207783 scopus 로고    scopus 로고
    • Partially parametric techniques for multiple imputation
    • Schenker, N. and Taylor, J. M. G. (1996). Partially parametric techniques for multiple imputation. Comput. Statist. Data Anal. 22 425-446.
    • (1996) Comput. Statist. Data Anal. , vol.22 , pp. 425-446
    • Schenker, N.1    Taylor, J.M.G.2
  • 37
    • 0010342144 scopus 로고    scopus 로고
    • Ph.D. thesis, Dept. Statistics, Harvard Univ., Cambridge, MA
    • Shen, Z. J. (2000). Nested multiple imputation. Ph.D. thesis, Dept. Statistics, Harvard Univ., Cambridge, MA.
    • (2000) Nested multiple imputation
    • Shen, Z.J.1
  • 38
    • 38849125474 scopus 로고    scopus 로고
    • Multiple imputation using an iterative hot-deck with distance-based donor selection
    • MR2416864
    • Siddique, J. and Belin, T. R. (2008a). Multiple imputation using an iterative hot-deck with distance-based donor selection. Stat. Med. 27 83-102. MR2416864
    • (2008) Stat. Med. , vol.27 , pp. 83-102
    • Siddique, J.1    Belin, T.R.2
  • 39
    • 55549128556 scopus 로고    scopus 로고
    • Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data
    • MR2649095
    • Siddique, J. and Belin, T. R. (2008b). Using an approximate Bayesian bootstrap to multiply impute nonignorable missing data. Comput. Statist. Data Anal. 53 405-415. MR2649095
    • (2008) Comput. Statist. Data Anal. , vol.53 , pp. 405-415
    • Siddique, J.1    Belin, T.R.2
  • 42
    • 0016264378 scopus 로고
    • Judgment under uncertainty: Heuristics and biases
    • Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science 185 1124-1131.
    • (1974) Science , vol.185 , pp. 1124-1131
    • Tversky, A.1    Kahneman, D.2
  • 43
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • MR2371007
    • van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16 219-242. MR2371007
    • (2007) Stat. Methods Med. Res. , vol.16 , pp. 219-242
    • van Buuren, S.1
  • 44
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren, S., Boshuizen, H. C. and Knook, D. L. (1999). Multiple imputation of missing blood pressure covariates in survival analysis. Stat. Med. 18 681-694.
    • (1999) Stat. Med. , vol.18 , pp. 681-694
    • van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 46
    • 33750348204 scopus 로고    scopus 로고
    • Ignorance and uncertainty regions as inferential tools in a sensitivity analysis
    • MR2281311
    • Vansteelandt, S., Goetghebeur, E., Kenward, M. G. and Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statist. Sinica 16 953-979. MR2281311
    • (2006) Statist. Sinica , vol.16 , pp. 953-979
    • Vansteelandt, S.1    Goetghebeur, E.2    Kenward, M.G.3    Molenberghs, G.4
  • 47
    • 55549084270 scopus 로고
    • Comment on hierarchical logistic regression models for imputation of unresolved enumeration status in undercount estimation
    • Wachter, K. W. (1993). Comment on hierarchical logistic regression models for imputation of unresolved enumeration status in undercount estimation. J. Amer. Statist. Assoc. 88 1161-1163.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 1161-1163
    • Wachter, K.W.1
  • 49
    • 34249281320 scopus 로고    scopus 로고
    • Eliciting and using expert opinions about dropout bias in randomized controlled trials
    • White, I. R., Carpenter, J., Evans, S. and Schroter, S. (2007). Eliciting and using expert opinions about dropout bias in randomized controlled trials. Clinical Trials 4 125-139.
    • (2007) Clinical Trials , vol.4 , pp. 125-139
    • White, I.R.1    Carpenter, J.2    Evans, S.3    Schroter, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.