-
1
-
-
84886456692
-
Tuning response curves for synthetic biology
-
#x0026;
-
Ang, J., Harris, E., Hussey, B. J., Kil, R., & McMillen, D. R. (2013). Tuning response curves for synthetic biology. ACS Synthetic Biology, 2(10), 547–567.
-
(2013)
ACS Synthetic Biology
, vol.2
, Issue.10
, pp. 547-567
-
-
Ang, J.1
Harris, E.2
Hussey, B.J.3
Kil, R.4
McMillen, D.R.5
-
2
-
-
0021100019
-
Essential structure of E. coli promoter: Effect of spacer length between the two consensus sequences on promoter function
-
#x0026;
-
Aoyama, T., Takanami, M., Ohtsuka, E., Taniyama, Y., Marumoto, R., Sato, H., & Ikehara, M. (1983). Essential structure of E. coli promoter: Effect of spacer length between the two consensus sequences on promoter function. Nucleic Acids Research, 11(17), 5855–5864.
-
(1983)
Nucleic Acids Research
, vol.11
, Issue.17
, pp. 5855-5864
-
-
Aoyama, T.1
Takanami, M.2
Ohtsuka, E.3
Taniyama, Y.4
Marumoto, R.5
Sato, H.6
Ikehara, M.7
-
3
-
-
84929601002
-
Environmental sensing of heavy metals through whole cell microbial biosensors: A synthetic biology approach
-
#x0026;
-
Bereza-Malcolm, L. T., Mann, G., & Franks, A. E. (2015). Environmental sensing of heavy metals through whole cell microbial biosensors: A synthetic biology approach. ACS Synthetic Biology, 4(5), 535–546.
-
(2015)
ACS Synthetic Biology
, vol.4
, Issue.5
, pp. 535-546
-
-
Bereza-Malcolm, L.T.1
Mann, G.2
Franks, A.E.3
-
4
-
-
80053089333
-
Selective detection of gold using genetically engineered bacterial reporters
-
#x0026;
-
Cerminati, S., Soncini, F. C., & Checa, S. K. (2011). Selective detection of gold using genetically engineered bacterial reporters. Biotechnology and Bioengineering, 108(11), 2553–2560.
-
(2011)
Biotechnology and Bioengineering
, vol.108
, Issue.11
, pp. 2553-2560
-
-
Cerminati, S.1
Soncini, F.C.2
Checa, S.K.3
-
5
-
-
84939207951
-
Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine
-
#x0026;
-
Chae, T. U., Kim, W. J., Choi, S., Park, S. J., & Lee, S. Y. (2015). Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Scientific Reports, 5, 13040.
-
(2015)
Scientific Reports
, vol.5
, pp. 13040
-
-
Chae, T.U.1
Kim, W.J.2
Choi, S.3
Park, S.J.4
Lee, S.Y.5
-
6
-
-
85006819356
-
Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR
-
#x0026;
-
Chong, H., & Ching, C. B. (2016). Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR. ACS Synthetic Biology, 5(11), 1290–1298.
-
(2016)
ACS Synthetic Biology
, vol.5
, Issue.11
, pp. 1290-1298
-
-
Chong, H.1
Ching, C.B.2
-
7
-
-
84886022252
-
Programming adaptive control to evolve increased metabolite production
-
#x0026;
-
Chou, H. H., & Keasling, J. D. (2013). Programming adaptive control to evolve increased metabolite production. Nature Communications, 4, 2595.
-
(2013)
Nature Communications
, vol.4
, pp. 2595
-
-
Chou, H.H.1
Keasling, J.D.2
-
8
-
-
84887422015
-
Engineering dynamic pathway regulation using stress-response promoters
-
Dahl, R. H., Zhang, F., Alonso-Gutierrez, J., Baidoo, E., Batth, T. S., Redding-Johanson, A. M., … Keasling, J. D. (2013). Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 31(11), 1039–1046.
-
(2013)
Nature Biotechnology
, vol.31
, Issue.11
, pp. 1039-1046
-
-
Dahl, R.H.1
Zhang, F.2
Alonso-Gutierrez, J.3
Baidoo, E.4
Batth, T.S.5
Redding-Johanson, A.M.6
Keasling, J.D.7
-
9
-
-
84875515904
-
Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis
-
#x0026;
-
Dietrich, J. A., Shis, D. L., Alikhani, A., & Keasling, J. D. (2013). Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synthetic Biology, 2(1), 47–58.
-
(2013)
ACS Synthetic Biology
, vol.2
, Issue.1
, pp. 47-58
-
-
Dietrich, J.A.1
Shis, D.L.2
Alikhani, A.3
Keasling, J.D.4
-
10
-
-
84947734391
-
Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli
-
Fang, M., Wang, T., Zhang, C., Bai, J., Zheng, X., Zhao, X., … Xing, X. H. (2016). Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metabolic Engineering, 33, 41–51.
-
(2016)
Metabolic Engineering
, vol.33
, pp. 41-51
-
-
Fang, M.1
Wang, T.2
Zhang, C.3
Bai, J.4
Zheng, X.5
Zhao, X.6
Xing, X.H.7
-
11
-
-
84865362287
-
Bio-based production of C2-C6 platform chemicals
-
Jang, Y. S., Kim, B., Shin, J. H., Choi, Y. J., Choi, S., Song, C. W., … Lee, S. Y. (2012). Bio-based production of C2-C6 platform chemicals. Biotechnology and Bioengineering, 109(10), 2437–2459.
-
(2012)
Biotechnology and Bioengineering
, vol.109
, Issue.10
, pp. 2437-2459
-
-
Jang, Y.S.1
Kim, B.2
Shin, J.H.3
Choi, Y.J.4
Choi, S.5
Song, C.W.6
Lee, S.Y.7
-
12
-
-
0022820998
-
Functional dissection of Escherichia coli promoters: Information in the transcribed region is involved in late steps of the overall process
-
#x0026;
-
Kammerer, W., Deuschle, U., Gentz, R., & Bujard, H. (1986). Functional dissection of Escherichia coli promoters: Information in the transcribed region is involved in late steps of the overall process. EMBO Journal, 5(11), 2995–3000.
-
(1986)
EMBO Journal
, vol.5
, Issue.11
, pp. 2995-3000
-
-
Kammerer, W.1
Deuschle, U.2
Gentz, R.3
Bujard, H.4
-
13
-
-
14244267811
-
A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12
-
#x0026;
-
Kurihara, S., Oda, S., Kato, K., Kim, H. G., Koyanagi, T., Kumagai, H., & Suzuki, H. (2005). A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. The Journal of Biological Chemistry, 280(6), 4602–4608.
-
(2005)
The Journal of Biological Chemistry
, vol.280
, Issue.6
, pp. 4602-4608
-
-
Kurihara, S.1
Oda, S.2
Kato, K.3
Kim, H.G.4
Koyanagi, T.5
Kumagai, H.6
Suzuki, H.7
-
14
-
-
50649093801
-
γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12
-
#x0026;
-
Kurihara, S., Oda, S., Tsuboi, Y., Kim, H. G., Oshida, M., Kumagai, H., & Suzuki, H. (2008). γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. The Journal of Biological Chemistry, 283(29), 19981–19990.
-
(2008)
The Journal of Biological Chemistry
, vol.283
, Issue.29
, pp. 19981-19990
-
-
Kurihara, S.1
Oda, S.2
Tsuboi, Y.3
Kim, H.G.4
Oshida, M.5
Kumagai, H.6
Suzuki, H.7
-
15
-
-
84920105217
-
Construction and evaluation of a genetic construct for specific detection and measurement of propionate by whole-cell bacteria
-
#x0026;
-
Li, Y. F., & Yu, Z. (2015). Construction and evaluation of a genetic construct for specific detection and measurement of propionate by whole-cell bacteria. Biotechnology and Bioengineering, 112(2), 280–287.
-
(2015)
Biotechnology and Bioengineering
, vol.112
, Issue.2
, pp. 280-287
-
-
Li, Y.F.1
Yu, Z.2
-
16
-
-
84994000776
-
Expanding biosensing abilities through computer-aided design of metabolic pathways
-
#x0026;
-
Libis, V., Delépine, B., & Faulon, J. L. (2016). Expanding biosensing abilities through computer-aided design of metabolic pathways. ACS Synthetic Biology, 5(10), 1076–1085.
-
(2016)
ACS Synthetic Biology
, vol.5
, Issue.10
, pp. 1076-1085
-
-
Libis, V.1
Delépine, B.2
Faulon, J.L.3
-
17
-
-
84986247556
-
Applications and advances of metabolite biosensors for metabolic engineering
-
#x0026;
-
Liu, D., Evans, T., & Zhang, F. (2015). Applications and advances of metabolite biosensors for metabolic engineering. Metabolic Engineering, 31, 35–43.
-
(2015)
Metabolic Engineering
, vol.31
, pp. 35-43
-
-
Liu, D.1
Evans, T.2
Zhang, F.3
-
18
-
-
84924239544
-
Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator
-
#x0026;
-
Liu, D., Xiao, Y., Evans, B. S., & Zhang, F. (2015). Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synthetic Biology, 4(2), 132–140.
-
(2015)
ACS Synthetic Biology
, vol.4
, Issue.2
, pp. 132-140
-
-
Liu, D.1
Xiao, Y.2
Evans, B.S.3
Zhang, F.4
-
19
-
-
0030861452
-
Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements
-
#x0026;
-
Lutz, R., & Bujard, H. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research, 25(6), 1203–1210.
-
(1997)
Nucleic Acids Research
, vol.25
, Issue.6
, pp. 1203-1210
-
-
Lutz, R.1
Bujard, H.2
-
20
-
-
84952978551
-
Transcription factor-based biosensors in biotechnology: Current state and future prospects
-
#x0026;
-
Mahr, R., & Frunzke, J. (2016). Transcription factor-based biosensors in biotechnology: Current state and future prospects. Applied Microbiology and Biotechnology, 100(1), 79–90.
-
(2016)
Applied Microbiology and Biotechnology
, vol.100
, Issue.1
, pp. 79-90
-
-
Mahr, R.1
Frunzke, J.2
-
21
-
-
85031897610
-
Fundamental design principles for transcription-factor-based metabolite biosensors
-
#x0026;
-
Mannan, A. A., Liu, D., Zhang, F., & Oyarzún, D. A. (2017). Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synthetic Biology, 6(10), 1851–1859.
-
(2017)
ACS Synthetic Biology
, vol.6
, Issue.10
, pp. 1851-1859
-
-
Mannan, A.A.1
Liu, D.2
Zhang, F.3
Oyarzún, D.A.4
-
22
-
-
84954304557
-
Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites
-
#x0026;
-
Merulla, D., & van der Meer, J. R. (2016). Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synthetic Biology, 5(1), 36–45.
-
(2016)
ACS Synthetic Biology
, vol.5
, Issue.1
, pp. 36-45
-
-
Merulla, D.1
van der Meer, J.R.2
-
23
-
-
84886497980
-
Genetic sensor for strong methylating compounds
-
#x0026;
-
Moser, F., Horwitz, A., Chen, J., Lim, W., & Voigt, C. A. (2013). Genetic sensor for strong methylating compounds. ACS Synthetic Biology, 2(10), 614–624.
-
(2013)
ACS Synthetic Biology
, vol.2
, Issue.10
, pp. 614-624
-
-
Moser, F.1
Horwitz, A.2
Chen, J.3
Lim, W.4
Voigt, C.A.5
-
24
-
-
84862193202
-
The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids
-
#x0026;
-
Mustafi, N., Grünberger, A., Kohlheyer, D., Bott, M., & Frunzke, J. (2012). The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metabolic Engineering, 14(4), 449–457.
-
(2012)
Metabolic Engineering
, vol.14
, Issue.4
, pp. 449-457
-
-
Mustafi, N.1
Grünberger, A.2
Kohlheyer, D.3
Bott, M.4
Frunzke, J.5
-
25
-
-
84864022425
-
Mechanism for regulation of the putrescine utilization pathway by the transcription factor PuuR in Escherichia coli K-12
-
#x0026;
-
Nemoto, N., Kurihara, S., Kitahara, Y., Asada, K., Kato, K., & Suzuki, H. (2012). Mechanism for regulation of the putrescine utilization pathway by the transcription factor PuuR in Escherichia coli K-12. Journal of Bacteriology, 194(13), 3437–3447.
-
(2012)
Journal of Bacteriology
, vol.194
, Issue.13
, pp. 3437-3447
-
-
Nemoto, N.1
Kurihara, S.2
Kitahara, Y.3
Asada, K.4
Kato, K.5
Suzuki, H.6
-
26
-
-
85016910499
-
Fermentative production of the diamine putrescine: System metabolic engineering of Corynebacterium glutamicum
-
#x0026;
-
Nguyen, A. Q., Schneider, J., Reddy, G. K., & Wendisch, V. F. (2015). Fermentative production of the diamine putrescine: System metabolic engineering of Corynebacterium glutamicum. Metabolites, 5(2), 211–231.
-
(2015)
Metabolites
, vol.5
, Issue.2
, pp. 211-231
-
-
Nguyen, A.Q.1
Schneider, J.2
Reddy, G.K.3
Wendisch, V.F.4
-
27
-
-
84865075156
-
Flux variability scanning based on enforced objective flux for identifying gene amplification targets
-
#x0026;
-
Park, J. M., Park, H. M., Kim, W. J., Kim, H. U., Kim, T. Y., & Lee, S. Y. (2012). Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Systems Biology, 6, 106.
-
(2012)
BMC Systems Biology
, vol.6
, pp. 106
-
-
Park, J.M.1
Park, H.M.2
Kim, W.J.3
Kim, H.U.4
Kim, T.Y.5
Lee, S.Y.6
-
28
-
-
70350508288
-
Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine
-
#x0026;
-
Qian, Z. G., Xia, X. X., & Lee, S. Y. (2009). Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnology and Bioengineering, 104(4), 651–662.
-
(2009)
Biotechnology and Bioengineering
, vol.104
, Issue.4
, pp. 651-662
-
-
Qian, Z.G.1
Xia, X.X.2
Lee, S.Y.3
-
29
-
-
78649434619
-
Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine
-
#x0026;
-
Qian, Z. G., Xia, X. X., & Lee, S. Y. (2011). Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnology and Bioengineering, 108(1), 93–103.
-
(2011)
Biotechnology and Bioengineering
, vol.108
, Issue.1
, pp. 93-103
-
-
Qian, Z.G.1
Xia, X.X.2
Lee, S.Y.3
-
30
-
-
84919359797
-
Evolution-guided optimization of biosynthetic pathways
-
#x0026;
-
Raman, S., Rogers, J. K., Taylor, N. D., & Church, G. M. (2014). Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 111(50), 17803–17808.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, Issue.50
, pp. 17803-17808
-
-
Raman, S.1
Rogers, J.K.2
Taylor, N.D.3
Church, G.M.4
-
31
-
-
20544432535
-
The TetR family of transcriptional repressors
-
Ramos, J. L., Martínez-Bueno, M., Molina-Henares, A. J., Terán, W., Watanabe, K., Zhang, X., … Tobes, R. (2005). The TetR family of transcriptional repressors. Microbiology and Molecular Biology Reviews, 69(2), 326–356.
-
(2005)
Microbiology and Molecular Biology Reviews
, vol.69
, Issue.2
, pp. 326-356
-
-
Ramos, J.L.1
Martínez-Bueno, M.2
Molina-Henares, A.J.3
Terán, W.4
Watanabe, K.5
Zhang, X.6
Tobes, R.7
-
32
-
-
0242276682
-
Nitrogen assimilation and global regulation in Escherichia coli
-
Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology, 57, 155–176.
-
(2003)
Annual Review of Microbiology
, vol.57
, pp. 155-176
-
-
Reitzer, L.1
-
33
-
-
84959519771
-
Genetically encoded sensors enable real-time observation of metabolite production
-
#x0026;
-
Rogers, J. K., & Church, G. M. (2016). Genetically encoded sensors enable real-time observation of metabolite production. Proceedings of the National Academy of Sciences of the United States of America, 113(9), 2388–2393.
-
(2016)
Proceedings of the National Academy of Sciences of the United States of America
, vol.113
, Issue.9
, pp. 2388-2393
-
-
Rogers, J.K.1
Church, G.M.2
-
34
-
-
67650713931
-
The structural and functional diversity of metabolite-binding riboswitches
-
#x0026;
-
Roth, A., & Breaker, R. R. (2009). The structural and functional diversity of metabolite-binding riboswitches. Annual Review of Biochemistry, 78, 305–334.
-
(2009)
Annual Review of Biochemistry
, vol.78
, pp. 305-334
-
-
Roth, A.1
Breaker, R.R.2
-
35
-
-
84902679527
-
Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways
-
Schendzielorz, G., Dippong, M., Grünberger, A., Kohlheyer, D., Yoshida, A., Binder, S., … Eggeling, L. (2014). Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 3(1), 21–29.
-
(2014)
ACS Synthetic Biology
, vol.3
, Issue.1
, pp. 21-29
-
-
Schendzielorz, G.1
Dippong, M.2
Grünberger, A.3
Kohlheyer, D.4
Yoshida, A.5
Binder, S.6
Eggeling, L.7
-
36
-
-
84887778351
-
Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli
-
#x0026;
-
Siedler, S., Stahlhut, S. G., Malla, S., Maury, J., & Neves, A. R. (2014). Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 21, 2–8.
-
(2014)
Metabolic Engineering
, vol.21
, pp. 2-8
-
-
Siedler, S.1
Stahlhut, S.G.2
Malla, S.3
Maury, J.4
Neves, A.R.5
-
37
-
-
84988353386
-
Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast
-
Skjoedt, M. L., Snoek, T., Kildegaard, K. R., Arsovska, D., Eichenberger, M., Goedecke, T. J., … Keasling, J. D. (2016). Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nature Chemical Biology, 12(11), 951–958.
-
(2016)
Nature Chemical Biology
, vol.12
, Issue.11
, pp. 951-958
-
-
Skjoedt, M.L.1
Snoek, T.2
Kildegaard, K.R.3
Arsovska, D.4
Eichenberger, M.5
Goedecke, T.J.6
Keasling, J.D.7
-
38
-
-
84958247886
-
Synthetic biology to access and expand nature's chemical diversity
-
#x0026;
-
Smanski, M. J., Zhou, H., Claesen, J., Shen, B., Fischbach, M. A., & Voigt, C. A. (2016). Synthetic biology to access and expand nature's chemical diversity. Nature Reviews Microbiology, 14(3), 135–149.
-
(2016)
Nature Reviews Microbiology
, vol.14
, Issue.3
, pp. 135-149
-
-
Smanski, M.J.1
Zhou, H.2
Claesen, J.3
Shen, B.4
Fischbach, M.A.5
Voigt, C.A.6
-
39
-
-
84897096810
-
Genomic mining of prokaryotic repressors for orthogonal logic gates
-
#x0026;
-
Stanton, B. C., Nielsen, A. A., Tamsir, A., Clancy, K., Peterson, T., & Voigt, C. A. (2014). Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature Chemical Biology, 10(2), 99–105.
-
(2014)
Nature Chemical Biology
, vol.10
, Issue.2
, pp. 99-105
-
-
Stanton, B.C.1
Nielsen, A.A.2
Tamsir, A.3
Clancy, K.4
Peterson, T.5
Voigt, C.A.6
-
40
-
-
0022001625
-
Polyamines in microorganisms
-
#x0026;
-
Tabor, C. W., & Tabor, H. (1985). Polyamines in microorganisms. Microbiological Reviews, 49(1), 81–99.
-
(1985)
Microbiological Reviews
, vol.49
, Issue.1
, pp. 81-99
-
-
Tabor, C.W.1
Tabor, H.2
-
41
-
-
79251580632
-
Design and application of a mevalonate-responsive regulatory protein
-
#x0026;
-
Tang, S. Y., & Cirino, P. C. (2011). Design and application of a mevalonate-responsive regulatory protein. Angewandte Chemie International Edition in English, 50(5), 1084–1086.
-
(2011)
Angewandte Chemie International Edition in English
, vol.50
, Issue.5
, pp. 1084-1086
-
-
Tang, S.Y.1
Cirino, P.C.2
-
42
-
-
42149120662
-
AraC regulatory protein mutants with altered effector specificity
-
#x0026;
-
Tang, S. Y., Fazelinia, H., & Cirino, P. C. (2008). AraC regulatory protein mutants with altered effector specificity. Journal of the American Chemical Society, 130(15), 5267–5271.
-
(2008)
Journal of the American Chemical Society
, vol.130
, Issue.15
, pp. 5267-5271
-
-
Tang, S.Y.1
Fazelinia, H.2
Cirino, P.C.3
-
43
-
-
84879999713
-
Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter
-
#x0026;
-
Tang, S. Y., Qian, S., Akinterinwa, O., Frei, C. S., Gredell, J. A., & Cirino, P. C. (2013). Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 135(27), 10099–10103.
-
(2013)
Journal of the American Chemical Society
, vol.135
, Issue.27
, pp. 10099-10103
-
-
Tang, S.Y.1
Qian, S.2
Akinterinwa, O.3
Frei, C.S.4
Gredell, J.A.5
Cirino, P.C.6
-
44
-
-
84947923934
-
Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae
-
#x0026;
-
Wang, M., Li, S., & Zhao, H. (2016). Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 113(1), 206–215.
-
(2016)
Biotechnology and Bioengineering
, vol.113
, Issue.1
, pp. 206-215
-
-
Wang, M.1
Li, S.2
Zhao, H.3
-
45
-
-
84961393253
-
Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis
-
#x0026;
-
Xiao, Y., Bowen, C. H., Liu, D., & Zhang, F. (2016). Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nature Chemical Biology, 12(5), 339–344.
-
(2016)
Nature Chemical Biology
, vol.12
, Issue.5
, pp. 339-344
-
-
Xiao, Y.1
Bowen, C.H.2
Liu, D.3
Zhang, F.4
-
46
-
-
84905668376
-
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
-
#x0026;
-
Xu, P., Li, L., Zhang, F., Stephanopoulos, G., & Koffas, M. (2014). Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences of the United States of America, 111(31), 11299–11304.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, Issue.31
, pp. 11299-11304
-
-
Xu, P.1
Li, L.2
Zhang, F.3
Stephanopoulos, G.4
Koffas, M.5
-
47
-
-
84879164975
-
Synthetic RNA devices to expedite the evolution of metabolite-producing microbes
-
#x0026;
-
Yang, J., Seo, S. W., Jang, S., Shin, S. I., Lim, C. H., Roh, T. Y., & Jung, G. Y. (2013). Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature Communications, 4, 1413.
-
(2013)
Nature Communications
, vol.4
, pp. 1413
-
-
Yang, J.1
Seo, S.W.2
Jang, S.3
Shin, S.I.4
Lim, C.H.5
Roh, T.Y.6
Jung, G.Y.7
-
48
-
-
84859633048
-
Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
-
#x0026;
-
Zhang, F., Carothers, J. M., & Keasling, J. D. (2012). Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnology, 30(4), 354–359.
-
(2012)
Nature Biotechnology
, vol.30
, Issue.4
, pp. 354-359
-
-
Zhang, F.1
Carothers, J.M.2
Keasling, J.D.3
-
49
-
-
85018496299
-
Development of a transcription factor-based lactam biosensor
-
#x0026;
-
Zhang, J., Barajas, J. F., Burdu, M., Ruegg, T. L., Dias, B., & Keasling, J. D. (2017). Development of a transcription factor-based lactam biosensor. ACS Synthetic Biology, 6(3), 439–445.
-
(2017)
ACS Synthetic Biology
, vol.6
, Issue.3
, pp. 439-445
-
-
Zhang, J.1
Barajas, J.F.2
Burdu, M.3
Ruegg, T.L.4
Dias, B.5
Keasling, J.D.6
-
50
-
-
84931265624
-
Development of biosensors and their application in metabolic engineering
-
#x0026;
-
Zhang, J., Jensen, M. K., & Keasling, J. D. (2015). Development of biosensors and their application in metabolic engineering. Current Opinion in Chemical Biology, 28, 1–8.
-
(2015)
Current Opinion in Chemical Biology
, vol.28
, pp. 1-8
-
-
Zhang, J.1
Jensen, M.K.2
Keasling, J.D.3
-
51
-
-
85006511727
-
+ redox biosensor in yeast
-
#x0026;
-
+ redox biosensor in yeast. ACS Synthetic Biology, 5(12), 1546–1556.
-
(2016)
ACS Synthetic Biology
, vol.5
, Issue.12
, pp. 1546-1556
-
-
Zhang, J.1
Sonnenschein, N.2
Pihl, T.P.3
Pedersen, K.R.4
Jensen, M.K.5
Keasling, J.D.6
-
52
-
-
84934907570
-
Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum
-
#x0026;
-
Zhou, L. B., & Zeng, A. P. (2015). Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synthetic Biology, 4(6), 729–734.
-
(2015)
ACS Synthetic Biology
, vol.4
, Issue.6
, pp. 729-734
-
-
Zhou, L.B.1
Zeng, A.P.2
|