-
1
-
-
84896690513
-
Prevalence of childhood and adult obesity in the United States, 2011-2012
-
C. L. Ogden, M. D. Carroll, B. K. Kit, and K. M. Flegal, "Prevalence of childhood and adult obesity in the United States, 2011-2012, " Jama, vol. 311, pp. 806-814, 2014.
-
(2014)
Jama
, vol.311
, pp. 806-814
-
-
Ogden, C.L.1
Carroll, M.D.2
Kit, B.K.3
Flegal, K.M.4
-
2
-
-
85011637818
-
-
World Health Organization: Fact sheets on obesity and overweight, 2016. [Online]. Available: http://www.who.int/ mediacentre/factsheets/fs311/en/.
-
(2016)
Fact Sheets on Obesity and Overweight
-
-
-
3
-
-
0000665718
-
Sources of variance in 24-hour dietary recall data: Implications for nutrition study design and interpretation
-
G. H. Beaton, et al., "Sources of variance in 24-hour dietary recall data: Implications for nutrition study design and interpretation, " Amer. J. Clinical Nutrition, vol. 32, pp. 986-995, 1979.
-
(1979)
Amer. J. Clinical Nutrition
, vol.32
, pp. 986-995
-
-
Beaton, G.H.1
-
4
-
-
0036023658
-
Development, validation and utilisation of food-frequency questionnaires-a review
-
J. Cade, R. Thompson, V. Burley, and D. Warm, "Development, validation and utilisation of food-frequency questionnaires-a review, " Public Health Nutrition, vol. 5, pp. 567-587, 2002.
-
(2002)
Public Health Nutrition
, vol.5
, pp. 567-587
-
-
Cade, J.1
Thompson, R.2
Burley, V.3
Warm, D.4
-
5
-
-
84929930245
-
An overview of the state of the art of automated capture of dietary intake information
-
R. Steele, "An overview of the state of the art of automated capture of dietary intake information, " Critical Rev. Food Sci. Nutrition, vol. 55, pp. 1929-1938, 2013.
-
(2013)
Critical Rev. Food Sci. Nutrition
, vol.55
, pp. 1929-1938
-
-
Steele, R.1
-
6
-
-
84874569412
-
Multiple-food recognition considering co-occurrence employing manifold ranking
-
Y. Matsuda and K. Yanai, "Multiple-food recognition considering co-occurrence employing manifold ranking, " in Proc. 21st Int. Conf. Pattern Recognit., 2012, pp. 2017-2020.
-
(2012)
In Proc. 21st Int. Conf. Pattern Recognit
, pp. 2017-2020
-
-
Matsuda, Y.1
Yanai, K.2
-
7
-
-
77955988961
-
Food recognition using statistics of pairwise local features
-
S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar, "Food recognition using statistics of pairwise local features, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2010, pp. 2249-2256.
-
(2010)
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 2249-2256
-
-
Yang, S.1
Chen, M.2
Pomerleau, D.3
Sukthankar, R.4
-
8
-
-
77954797837
-
The use of mobile devices in aiding dietary assessment and evaluation
-
Aug
-
F. Zhu, et al., "The use of mobile devices in aiding dietary assessment and evaluation, " IEEE J. Selected Topics Signal Process., vol. 4, no. 4, pp. 756-766, Aug. 2010.
-
(2010)
IEEE J. Selected Topics Signal Process
, vol.4
, Issue.4
, pp. 756-766
-
-
Zhu, F.1
-
9
-
-
84862001432
-
Novel technologies for assessing dietary intake: Evaluating the usability of a mobile telephone food record among adults and adolescents
-
B. L. Daugherty, et al., "Novel technologies for assessing dietary intake: Evaluating the usability of a mobile telephone food record among adults and adolescents, " J. Med. Internet Res., vol. 14, 2012, Art. no. e58.
-
(2012)
J. Med. Internet Res
, vol.14
-
-
Daugherty, B.L.1
-
10
-
-
84887412599
-
Image-based food volume estimation
-
C. Xu, Y. He, N. Khannan, A. Parra, C. Boushey, and E. Delp, "Image-based food volume estimation, " in Proc. 5th Int. Workshop Multimedia Cooking Eating Activities, 2013, pp. 75-80.
-
(2013)
In Proc. 5th Int. Workshop Multimedia Cooking Eating Activities
, pp. 75-80
-
-
Xu, C.1
He, Y.2
Khannan, N.3
Parra, A.4
Boushey, C.5
Delp, E.6
-
15
-
-
84893636265
-
Measuring food intake with digital photography
-
Jan
-
C. K. Martin, T. Nicklas, B. Gunturk, J. B. Correa, H. R. Allen, and C. Champagne, "Measuring food intake with digital photography, " J. Hum. Nutr. Diet., vol. 27 no. Suppl 1, pp. 72-81, Jan. 2014.
-
(2014)
J. Hum. Nutr. Diet
, vol.27
, pp. 72-81
-
-
Martin, C.K.1
Nicklas, T.2
Gunturk, B.3
Correa, J.B.4
Allen, H.R.5
Champagne, C.6
-
16
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI, " Found. Trends- Mach. Learning, vol. 2, pp. 1-127, 2009.
-
(2009)
Found. Trends- Mach. Learning
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
17
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E.Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, pp. 1527-1554, 2006.
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
18
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning, " Nature, vol. 521, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
19
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
Nov
-
D. G. Lowe, "Distinctive image features from scale-invariant keypoints, " Int. J. Comput. Vis., vol. 60, pp. 91-110, Nov. 2004.
-
(2004)
Int. J. Comput. Vis
, vol.60
, pp. 91-110
-
-
Lowe, D.G.1
-
20
-
-
70350136710
-
The case for VM-based cloudlets in mobile computing
-
Oct.-Dec
-
M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, "The case for VM-based cloudlets in mobile computing, " IEEE Pervasive Comput., vol. 8, no. 4, pp. 14-23, Oct.-Dec. 2009.
-
(2009)
IEEE Pervasive Comput
, vol.8
, Issue.4
, pp. 14-23
-
-
Satyanarayanan, M.1
Bahl, P.2
Caceres, R.3
Davies, N.4
-
21
-
-
84969509112
-
Fog computing: Platform and applications
-
S. Yi, Z. Hao, Z. Qin, and Q. Li, "Fog computing: Platform and applications, " in Proc. 3rd IEEE Workshop Hot Topics Web Syst. Technol., 2015, pp. 73-78.
-
(2015)
In Proc. 3rd IEEE Workshop Hot Topics Web Syst. Technol
, pp. 73-78
-
-
Yi, S.1
Hao, Z.2
Qin, Z.3
Li, Q.4
-
22
-
-
84987842183
-
Edge computing: Vision and challenges
-
Oct
-
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: vision and challenges, " IEEE Internet Things J., vol. 3, no. 6, pp. 637-646, Oct. 2016.
-
(2016)
IEEE Internet Things J
, vol.3
, Issue.6
, pp. 637-646
-
-
Shi, W.1
Cao, J.2
Zhang, Q.3
Li, Y.4
Xu, L.5
-
23
-
-
84924366561
-
Cloudlets: At the leading edge of mobile-cloud convergence
-
M. Satyanarayanan, Z. Chen, K.Ha, W.Hu, W. Richter, and P. Pillai, "Cloudlets: At the leading edge of mobile-cloud convergence, " in Proc. 6th Int. Conf.Mobile Comput. Appl. Services, 2014, pp. 1-9.
-
(2014)
In Proc. 6th Int. Conf.Mobile Comput. Appl. Services
, pp. 1-9
-
-
Satyanarayanan, M.1
Chen, Z.2
Ha, K.3
Hu, W.4
Richter, W.5
Pillai, P.6
-
24
-
-
84969922595
-
The promise of edge computing
-
May
-
W. Shi and S. Dustdar, "The promise of edge computing, " IEEE Comput. Mag., vol. 29, no. 5, pp. 78-81, May 2016.
-
(2016)
IEEE Comput. Mag
, vol.29
, Issue.5
, pp. 78-81
-
-
Shi, W.1
Dustdar, S.2
-
25
-
-
84951050684
-
A survey of fog computing: Concepts, applications and issues
-
S. Yi, C. Li, and Q. Li, "A survey of fog computing: Concepts, applications and issues, " in Proc. Workshop Mobile Big Data, 2015, pp. 37-42.
-
(2015)
In Proc. Workshop Mobile Big Data
, pp. 37-42
-
-
Yi, S.1
Li, C.2
Li, Q.3
-
26
-
-
84977268028
-
Edge-centric computing: Vision and challenges
-
P. Garcia Lopez, et al., "Edge-centric computing: Vision and challenges, " ACM SIGCOMM Comput. Commun. Rev., vol. 45, pp. 37-42, 2015.
-
(2015)
ACM SIGCOMM Comput. Commun. Rev
, vol.45
, pp. 37-42
-
-
Garcia Lopez, P.1
-
27
-
-
23844459275
-
Long-term weight loss maintenance
-
R. R. Wing and S. Phelan, "Long-term weight loss maintenance, " Amer. J. Clinical Nutrition, vol. 82, pp. 222S-225S, 2005.
-
(2005)
Amer. J. Clinical Nutrition
, vol.82
, pp. 222S-225S
-
-
Wing, R.R.1
Phelan, S.2
-
31
-
-
84973896949
-
Im2Calories: Towards an automated mobile vision food diary
-
A. Meyers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban, et al., "Im2Calories: Towards an automated mobile vision food diary, " in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1233-1241.
-
(2015)
In Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit
, pp. 1233-1241
-
-
Meyers, A.1
Johnston, N.2
Rathod, V.3
Korattikara, A.4
Gorban, A.5
-
32
-
-
84944735469
-
-
Cambridge MA USA: MIT Press
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Cambridge, MA, USA: MIT Press, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
34
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
-
D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, " J. Physiology, vol. 160, pp. 106-154, 1962.
-
(1962)
J. Physiology
, vol.160
, pp. 106-154
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
35
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
36
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248-255.
-
(2009)
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
37
-
-
84904163933
-
Dropout: A simple way to prevent neural networks fromoverfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks fromoverfitting, " J.Mach. Learning Res., vol. 15, pp. 1929-1958, 2014.
-
(2014)
J.Mach. Learning Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
39
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks, " in Computer Vision-ECCV, Berlin, Germany: Springer, 2014, pp. 818-833.
-
(2014)
In Computer Vision-ECCV, Berlin, Germany
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
41
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770-778.
-
(2016)
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
42
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
43
-
-
84986212926
-
Smart Items, fog and cloud computing as enablers of servitization in healthcare
-
V. Stantchev, A. Barnawi, S. Ghulam, J. Schubert, and G. Tamm, "Smart Items, fog and cloud computing as enablers of servitization in healthcare, " Sensors Transducers, vol. 185, 2015, Art. no. 121.
-
(2015)
Sensors Transducers
, vol.185
-
-
Stantchev, V.1
Barnawi, A.2
Ghulam, S.3
Schubert, J.4
Tamm, G.5
-
44
-
-
84960857858
-
FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation
-
presented at
-
Y. Cao, S. Chen, P. Hou, and D. Buhl-Brown, "FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation, " presented at Prof. 10th IEEE Int. Conf. Netw. Archit. Storage (Best Paper Award), Boston, MA, USA, 2015.
-
(2015)
Prof. 10th IEEE Int. Conf. Netw. Archit. Storage (Best Paper Award), Boston, MA, USA
-
-
Cao, Y.1
Chen, S.2
Hou, P.3
Buhl-Brown, D.4
-
45
-
-
84987606033
-
Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor and marginalized communities
-
Y. Cao, et al., "Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor and marginalized communities, " in Proc. IEEE Conf. Connected Health: Appl. Syst. Eng. Technol., 2016, pp. 274-281.
-
(2016)
In Proc. IEEE Conf. Connected Health: Appl. Syst. Eng. Technol
, pp. 274-281
-
-
Cao, Y.1
-
46
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, et al., "Caffe: Convolutional architecture for fast feature embedding, " in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675- 678.
-
(2014)
In Proc. ACM Int. Conf. Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
47
-
-
69549092081
-
Measuring objective quality of colonoscopy
-
Sep
-
J. Oh, et al., "Measuring objective quality of colonoscopy, " IEEE Trans. Biomed. Eng., vol. 56, no. 9, pp. 2190-2196, Sep. 2009.
-
(2009)
IEEE Trans. Biomed. Eng
, vol.56
, Issue.9
, pp. 2190-2196
-
-
Oh, J.1
-
49
-
-
85083953135
-
Network in network
-
M. Lin, Q. Chen, and S. Yan, "Network in network, " in Proc. Int. Conf. Learn. Represent., 2014, pp. 1-9.
-
(2014)
In Proc. Int. Conf. Learn. Represent
, pp. 1-9
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
52
-
-
37749026198
-
-
Sebastopol, CA, USA: O'Reilly Media, Inc
-
G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library. Sebastopol, CA, USA: O'Reilly Media, Inc., 2008.
-
(2008)
Learning OpenCV: Computer Vision with the OpenCV Library
-
-
Bradski, G.1
Kaehler, A.2
-
54
-
-
43049174575
-
Speeded-up robust features (SURF)
-
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features (SURF), " Comput. Vis. Image Understanding, vol. 110, pp. 346-359, 2008.
-
(2008)
Comput. Vis. Image Understanding
, vol.110
, pp. 346-359
-
-
Bay, H.1
Ess, A.2
Tuytelaars, T.3
Van Gool, L.4
-
57
-
-
84933679849
-
Foodcam: A real-time food recognition system on a smartphone
-
Y. Kawano and K. Yanai, "Foodcam: A real-time food recognition system on a smartphone, " Multimedia Tools Appl., vol. 74, pp. 1-25, 2015.
-
(2015)
Multimedia Tools Appl
, vol.74
, pp. 1-25
-
-
Kawano, Y.1
Yanai, K.2
-
58
-
-
84906335989
-
Food-101-mining discriminative components with random forests
-
Berlin, Germany: Springer
-
L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101-mining discriminative components with random forests, " in Computer Vision-ECCV, Berlin, Germany: Springer, 2014, pp. 446-461.
-
(2014)
In Computer Vision-ECCV
, pp. 446-461
-
-
Bossard, L.1
Guillaumin, M.2
Van Gool, L.3
-
60
-
-
85059871374
-
DeepFood: Deep learning-based food image recognition for computer- aided dietary assessment
-
presented at
-
C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, and Y. Ma, "DeepFood: Deep learning-based food image recognition for computer- aided dietary assessment, " presented at Prof. 14th Int. Conf. Smart homes Health Telematics, Wuhan, China, 2016.
-
(2016)
Prof. 14th Int. Conf. Smart Homes Health Telematics, Wuhan, China
-
-
Liu, C.1
Cao, Y.2
Luo, Y.3
Chen, G.4
Vokkarane, V.5
Ma, Y.6
-
61
-
-
84906493406
-
Microsoft coco: Common objects in context
-
Springer
-
T.-Y. Lin, et al., "Microsoft coco: Common objects in context, " in Computer Vision-ECCV, Berlin, Germany: Springer, 2014, pp. 740- 755.
-
(2014)
In Computer Vision-ECCV, Berlin, Germany
, pp. 740-755
-
-
Lin, T.-Y.1
-
62
-
-
84986275157
-
Quantized Convolutional Neural Networks for Mobile Devices
-
J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, "Quantized Convolutional Neural Networks for Mobile Devices, " In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4820-4828.
-
(2016)
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 4820-4828
-
-
Wu, J.1
Leng, C.2
Wang, Y.3
Hu, Q.4
Cheng, J.5
|