-
1
-
-
84925436446
-
Menu-match: Restaurant-specific food logging from images
-
O. Beijbom, N. Joshi, D. Morris, S. Saponas, and S. Khullar. Menu-match: restaurant-specific food logging from images. In WACV, 2015.
-
(2015)
WACV
-
-
Beijbom, O.1
Joshi, N.2
Morris, D.3
Saponas, S.4
Khullar, S.5
-
2
-
-
84925423461
-
Leveraging context to support automated food recognition in restaurants
-
V. Bettadapura, E. Thomaz, A. Parnami, G. D. Abowd, and I. Essa. Leveraging context to support automated food recognition in restaurants. In WACV, pages 580-587, 2015.
-
(2015)
WACV
, pp. 580-587
-
-
Bettadapura, V.1
Thomaz, E.2
Parnami, A.3
Abowd, G.D.4
Essa, I.5
-
3
-
-
84945537112
-
Food-101: Mining discriminative components with random forests
-
L. Bossard, M. Guillaumin, and L. Van Gool. Food-101: Mining discriminative components with random forests. In ECCV, 2014.
-
(2014)
ECCV
-
-
Bossard, L.1
Guillaumin, M.2
Van Gool, L.3
-
4
-
-
79953002788
-
Volume estimation using food specific shape templates in mobile image-based dietary assessment
-
J. Chae, I. Woo, S. Kim, R. Maciejewski, F. Zhu, E. J. Delp, C. J. Boushey, and D. S. Ebert. Volume estimation using food specific shape templates in mobile image-based dietary assessment. In Proc. SPIE, 2011.
-
(2011)
Proc. SPIE
-
-
Chae, J.1
Woo, I.2
Kim, S.3
Maciejewski, R.4
Zhu, F.5
Delp, E.J.6
Boushey, C.J.7
Ebert, D.S.8
-
5
-
-
0036781847
-
Energy intake and energy expenditure: A controlled study comparing dietitians and nondietitians
-
C. Champagne, G. Bray, A. Kurtz, J. Montiero, E. Tucker, J. Voaufova, and J. Delany. Energy intake and energy expenditure: A controlled study comparing dietitians and nondietitians. J. Am. Diet. Assoc., 2002.
-
(2002)
J. Am. Diet. Assoc
-
-
Champagne, C.1
Bray, G.2
Kurtz, A.3
Montiero, J.4
Tucker, E.5
Voaufova, J.6
Delany, J.7
-
6
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
7
-
-
77951953692
-
PFID: Pittsburgh fast-food image dataset
-
M. Chen, K. Dhingra, W. Wu, L. Yang, R. Sukthankar, and J. Yang. PFID: Pittsburgh fast-food image dataset. In ICIP, pages 289-292, 2009.
-
(2009)
ICIP
, pp. 289-292
-
-
Chen, M.1
Dhingra, K.2
Wu, W.3
Yang, L.4
Sukthankar, R.5
Yang, J.6
-
8
-
-
84951111760
-
Rethinking the mobile food journal: Exploring opportunities for lightweight Photo-Based capture
-
F. Cordeiro, E. Bales, E. Cherry, and J. Fogarty. Rethinking the mobile food journal: Exploring opportunities for lightweight Photo-Based capture. In CHI, 2015.
-
(2015)
CHI
-
-
Cordeiro, F.1
Bales, E.2
Cherry, E.3
Fogarty, J.4
-
9
-
-
84940678962
-
Barriers and negative nudges: Exploring challenges in food journaling
-
F. Cordeiro, D. Epstein, E. Thomaz, E. Bales, A. K. Jagannathan, G. D. Abowd, and J. Fogarty. Barriers and negative nudges: Exploring challenges in food journaling. In CHI, 2015.
-
(2015)
CHI
-
-
Cordeiro, F.1
Epstein, D.2
Thomaz, E.3
Bales, E.4
Jagannathan, A.K.5
Abowd, G.D.6
Fogarty, J.7
-
10
-
-
84894224507
-
Food volume computation for self dietary assessment applications
-
Nov
-
J. Dehais, S. Shevchik, P. Diem, and S. G. Mougiakakou. Food volume computation for self dietary assessment applications. In 13th IEEE Conf. on Bioinfo. And Bioeng., pages 1-4, Nov. 2013.
-
(2013)
13th IEEE Conf. on Bioinfo. And Bioeng.
, pp. 1-4
-
-
Dehais, J.1
Shevchik, S.2
Diem, P.3
Mougiakakou, S.G.4
-
11
-
-
84866674680
-
Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition
-
June
-
J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition. In CVPR, pages 3450-3457, June 2012.
-
(2012)
CVPR
, pp. 3450-3457
-
-
Deng, J.1
Krause, J.2
Berg, A.C.3
Fei-Fei, L.4
-
12
-
-
84986242085
-
Predicting depth, surface normals and semantic labels with a common Multi-Scale convolutional architecture
-
18 Nov
-
D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common Multi-Scale convolutional architecture. Arxiv, 18 Nov. 2014.
-
(2014)
Arxiv
-
-
Eigen, D.1
Fergus, R.2
-
13
-
-
84921069139
-
The pascal visual object classes challenge: A retrospective
-
25 June
-
M. Everingham, S. M. Ali Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. IJCV, 111(1):98-136, 25 June 2014.
-
(2014)
IJCV
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Ali Eslami, S.M.2
Van Gool, L.3
Williams, C.K.I.4
Winn, J.5
Zisserman, A.6
-
15
-
-
84973911662
-
-
FDA. www. fda. gov/Food/ IngredientsPackagingLabeling/ LabelingNutrition/ucm248732. htm.
-
-
-
-
16
-
-
84973881085
-
-
USDA FNDDS. www. Ars. usda. gov/ba/bhnrc/fsrg.
-
USDA FNDDS
-
-
-
19
-
-
84885658758
-
Food image analysis: Segmentation, identification and weight estimation
-
July
-
Y. He, C. Xu, N. Khanna, C. J. Boushey, and E. J. Delp. Food image analysis: Segmentation, identification and weight estimation. In ICME, pages 1-6, July 2013.
-
(2013)
ICME
, pp. 1-6
-
-
He, Y.1
Xu, C.2
Khanna, N.3
Boushey, C.J.4
Delp, E.J.5
-
21
-
-
84856114996
-
DietCam: Automatic dietary assessment with mobile camera phones
-
Feb
-
F. Kong and J. Tan. DietCam: Automatic dietary assessment with mobile camera phones. Pervasive Mob. Comput., 8(1):147-163, Feb. 2012.
-
(2012)
Pervasive Mob. Comput.
, vol.8
, Issue.1
, pp. 147-163
-
-
Kong, F.1
Tan, J.2
-
23
-
-
66849115444
-
A novel method to remotely measure food intake of free-living individuals in real time: The remote food photography method
-
C. K. Martin, H. Han, S. M. Coulon, H. R. Allen, C. M. Champagne, and S. D. Anton. A novel method to remotely measure food intake of free-living individuals in real time: The remote food photography method. British J. of Nutrition, 101(03):446-456, 2009.
-
(2009)
British J. of Nutrition
, vol.101
, Issue.3
, pp. 446-456
-
-
Martin, C.K.1
Han, H.2
Coulon, S.M.3
Allen, H.R.4
Champagne, C.M.5
Anton, S.D.6
-
24
-
-
84868141720
-
Recognition of multiple-food images by detecting candidate regions
-
July
-
Y. Matsuda, H. Hoashi, and K. Yanai. Recognition of Multiple-Food images by detecting candidate regions. In ICME, pages 25-30, July 2012.
-
(2012)
ICME
, pp. 25-30
-
-
Matsuda, Y.1
Hoashi, H.2
Yanai, K.3
-
25
-
-
84973912534
-
-
Mealsnap app
-
Mealsnap app. Tracker. dailyburn. com/apps.
-
-
-
-
27
-
-
84881317045
-
-
Google places API. https://developers. google. com/places/.
-
Google Places API
-
-
-
28
-
-
77951200029
-
Recognition and volume estimation of food intake using a mobile device
-
Dec
-
M. Puri, Z. Zhu, Q. Yu, A. Divakaran, and H. Sawhney. Recognition and volume estimation of food intake using a mobile device. In WACV, pages 1-8, Dec. 2009.
-
(2009)
WACV
, pp. 1-8
-
-
Puri, M.1
Zhu, Z.2
Yu, Q.3
Divakaran, A.4
Sawhney, H.5
-
29
-
-
84973911957
-
-
Rise app
-
Rise app. https://www. rise. us/.
-
-
-
-
30
-
-
84909978410
-
-
arXiv:1409. 0575
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. ArXiv:1409. 0575, 2014.
-
(2014)
ImageNet Large Scale Visual Recognition Challenge
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
31
-
-
0025346677
-
Inaccuracies in selfreported intake identified by comparison with the doubly labelled water method
-
D. Schoeller, L. Bandini, and W. Dietz. Inaccuracies in selfreported intake identified by comparison with the doubly labelled water method. Can. J. Physiol. Pharm., 1990.
-
(1990)
Can. J. Physiol. Pharm
-
-
Schoeller, D.1
Bandini, L.2
Dietz, W.3
-
32
-
-
84912554684
-
Can mobile augmented reality systems assist in portion estimation? a user study
-
T. Stutz, R. Dinic, M. Domhardt, and S. Ginzinger. Can mobile augmented reality systems assist in portion estimation? a user study. In Intl. Symp. Mixed and Aug. Reality, pages 51-57, 2014.
-
(2014)
Intl. Symp. Mixed and Aug. Reality
, pp. 51-57
-
-
Stutz, T.1
Dinic, R.2
Domhardt, M.3
Ginzinger, S.4
-
33
-
-
84908689187
-
Estimating nutritional value from food images based on semantic segmentation
-
13 Sept
-
K. Sudo, K. Murasaki, J. Shimamura, and Y. Taniguchi. Estimating nutritional value from food images based on semantic segmentation. In CEA workshop, pages 571-576, 13 Sept. 2014.
-
(2014)
CEA Workshop
, pp. 571-576
-
-
Sudo, K.1
Murasaki, K.2
Shimamura, J.3
Taniguchi, Y.4
-
34
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
35
-
-
84973885982
-
-
USDA National Nutrient Database for Standard Reference, Release 27 (revised)
-
USDA National Nutrient Database for Standard Reference, Release 27 (revised). http://www. Ars. usda. gov/ba/bhnrc/ndl.
-
-
-
-
37
-
-
84945189235
-
Snap-n-eat': Food recognition and nutrition estimation on a smartphone
-
W. Zhang, Q. Yu, B. Siddiquie, A. Divakaran, and H. Sawhney. 'Snap-n-eat': Food recognition and nutrition estimation on a smartphone. J. Diabetes Science and Technology, 9(3):525-533, 2015.
-
(2015)
J. Diabetes Science and Technology
, vol.9
, Issue.3
, pp. 525-533
-
-
Zhang, W.1
Yu, Q.2
Siddiquie, B.3
Divakaran, A.4
Sawhney, H.5
-
38
-
-
84920885244
-
Multiple hypotheses image segmentation and classification with application to dietary assessment
-
Jan
-
F. Zhu, M. Bosch, N. Khanna, C. J. Boushey, and E. J. Delp. Multiple hypotheses image segmentation and classification with application to dietary assessment. IEEE J. of Biomedical and Health Informatics, 19(1):377-388, Jan. 2015.
-
(2015)
IEEE J. of Biomedical and Health Informatics
, vol.19
, Issue.1
, pp. 377-388
-
-
Zhu, F.1
Bosch, M.2
Khanna, N.3
Boushey, C.J.4
Delp, E.J.5
-
39
-
-
77954797837
-
The use of mobile devices in aiding dietary assessment and evaluation
-
Aug
-
F. Zhu, M. Bosch, I. Woo, S. Kim, C. J. Boushey, D. S. Ebert, and E. J. Delp. The use of mobile devices in aiding dietary assessment and evaluation. IEEE J. Sel. Top. Signal Process., 4(4):756-766, Aug. 2010.
-
(2010)
IEEE J. Sel. Top. Signal Process.
, vol.4
, Issue.4
, pp. 756-766
-
-
Zhu, F.1
Bosch, M.2
Woo, I.3
Kim, S.4
Boushey, C.J.5
Ebert, D.S.6
Delp, E.J.7
|