메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1233-1241

Im2Calories: Towards an automated mobile vision food diary

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE SEGMENTATION;

EID: 84973896949     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.146     Document Type: Conference Paper
Times cited : (436)

References (39)
  • 2
    • 84925423461 scopus 로고    scopus 로고
    • Leveraging context to support automated food recognition in restaurants
    • V. Bettadapura, E. Thomaz, A. Parnami, G. D. Abowd, and I. Essa. Leveraging context to support automated food recognition in restaurants. In WACV, pages 580-587, 2015.
    • (2015) WACV , pp. 580-587
    • Bettadapura, V.1    Thomaz, E.2    Parnami, A.3    Abowd, G.D.4    Essa, I.5
  • 3
    • 84945537112 scopus 로고    scopus 로고
    • Food-101: Mining discriminative components with random forests
    • L. Bossard, M. Guillaumin, and L. Van Gool. Food-101: Mining discriminative components with random forests. In ECCV, 2014.
    • (2014) ECCV
    • Bossard, L.1    Guillaumin, M.2    Van Gool, L.3
  • 6
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 8
    • 84951111760 scopus 로고    scopus 로고
    • Rethinking the mobile food journal: Exploring opportunities for lightweight Photo-Based capture
    • F. Cordeiro, E. Bales, E. Cherry, and J. Fogarty. Rethinking the mobile food journal: Exploring opportunities for lightweight Photo-Based capture. In CHI, 2015.
    • (2015) CHI
    • Cordeiro, F.1    Bales, E.2    Cherry, E.3    Fogarty, J.4
  • 11
    • 84866674680 scopus 로고    scopus 로고
    • Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition
    • June
    • J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition. In CVPR, pages 3450-3457, June 2012.
    • (2012) CVPR , pp. 3450-3457
    • Deng, J.1    Krause, J.2    Berg, A.C.3    Fei-Fei, L.4
  • 12
    • 84986242085 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common Multi-Scale convolutional architecture
    • 18 Nov
    • D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common Multi-Scale convolutional architecture. Arxiv, 18 Nov. 2014.
    • (2014) Arxiv
    • Eigen, D.1    Fergus, R.2
  • 15
    • 84973911662 scopus 로고    scopus 로고
    • FDA. www. fda. gov/Food/ IngredientsPackagingLabeling/ LabelingNutrition/ucm248732. htm.
  • 16
    • 84973881085 scopus 로고    scopus 로고
    • USDA FNDDS. www. Ars. usda. gov/ba/bhnrc/fsrg.
    • USDA FNDDS
  • 19
    • 84885658758 scopus 로고    scopus 로고
    • Food image analysis: Segmentation, identification and weight estimation
    • July
    • Y. He, C. Xu, N. Khanna, C. J. Boushey, and E. J. Delp. Food image analysis: Segmentation, identification and weight estimation. In ICME, pages 1-6, July 2013.
    • (2013) ICME , pp. 1-6
    • He, Y.1    Xu, C.2    Khanna, N.3    Boushey, C.J.4    Delp, E.J.5
  • 21
    • 84856114996 scopus 로고    scopus 로고
    • DietCam: Automatic dietary assessment with mobile camera phones
    • Feb
    • F. Kong and J. Tan. DietCam: Automatic dietary assessment with mobile camera phones. Pervasive Mob. Comput., 8(1):147-163, Feb. 2012.
    • (2012) Pervasive Mob. Comput. , vol.8 , Issue.1 , pp. 147-163
    • Kong, F.1    Tan, J.2
  • 23
    • 66849115444 scopus 로고    scopus 로고
    • A novel method to remotely measure food intake of free-living individuals in real time: The remote food photography method
    • C. K. Martin, H. Han, S. M. Coulon, H. R. Allen, C. M. Champagne, and S. D. Anton. A novel method to remotely measure food intake of free-living individuals in real time: The remote food photography method. British J. of Nutrition, 101(03):446-456, 2009.
    • (2009) British J. of Nutrition , vol.101 , Issue.3 , pp. 446-456
    • Martin, C.K.1    Han, H.2    Coulon, S.M.3    Allen, H.R.4    Champagne, C.M.5    Anton, S.D.6
  • 24
    • 84868141720 scopus 로고    scopus 로고
    • Recognition of multiple-food images by detecting candidate regions
    • July
    • Y. Matsuda, H. Hoashi, and K. Yanai. Recognition of Multiple-Food images by detecting candidate regions. In ICME, pages 25-30, July 2012.
    • (2012) ICME , pp. 25-30
    • Matsuda, Y.1    Hoashi, H.2    Yanai, K.3
  • 25
    • 84973912534 scopus 로고    scopus 로고
    • Mealsnap app
    • Mealsnap app. Tracker. dailyburn. com/apps.
  • 27
    • 84881317045 scopus 로고    scopus 로고
    • Google places API. https://developers. google. com/places/.
    • Google Places API
  • 28
    • 77951200029 scopus 로고    scopus 로고
    • Recognition and volume estimation of food intake using a mobile device
    • Dec
    • M. Puri, Z. Zhu, Q. Yu, A. Divakaran, and H. Sawhney. Recognition and volume estimation of food intake using a mobile device. In WACV, pages 1-8, Dec. 2009.
    • (2009) WACV , pp. 1-8
    • Puri, M.1    Zhu, Z.2    Yu, Q.3    Divakaran, A.4    Sawhney, H.5
  • 29
    • 84973911957 scopus 로고    scopus 로고
    • Rise app
    • Rise app. https://www. rise. us/.
  • 31
    • 0025346677 scopus 로고
    • Inaccuracies in selfreported intake identified by comparison with the doubly labelled water method
    • D. Schoeller, L. Bandini, and W. Dietz. Inaccuracies in selfreported intake identified by comparison with the doubly labelled water method. Can. J. Physiol. Pharm., 1990.
    • (1990) Can. J. Physiol. Pharm
    • Schoeller, D.1    Bandini, L.2    Dietz, W.3
  • 33
    • 84908689187 scopus 로고    scopus 로고
    • Estimating nutritional value from food images based on semantic segmentation
    • 13 Sept
    • K. Sudo, K. Murasaki, J. Shimamura, and Y. Taniguchi. Estimating nutritional value from food images based on semantic segmentation. In CEA workshop, pages 571-576, 13 Sept. 2014.
    • (2014) CEA Workshop , pp. 571-576
    • Sudo, K.1    Murasaki, K.2    Shimamura, J.3    Taniguchi, Y.4
  • 35
    • 84973885982 scopus 로고    scopus 로고
    • USDA National Nutrient Database for Standard Reference, Release 27 (revised)
    • USDA National Nutrient Database for Standard Reference, Release 27 (revised). http://www. Ars. usda. gov/ba/bhnrc/ndl.
  • 38
    • 84920885244 scopus 로고    scopus 로고
    • Multiple hypotheses image segmentation and classification with application to dietary assessment
    • Jan
    • F. Zhu, M. Bosch, N. Khanna, C. J. Boushey, and E. J. Delp. Multiple hypotheses image segmentation and classification with application to dietary assessment. IEEE J. of Biomedical and Health Informatics, 19(1):377-388, Jan. 2015.
    • (2015) IEEE J. of Biomedical and Health Informatics , vol.19 , Issue.1 , pp. 377-388
    • Zhu, F.1    Bosch, M.2    Khanna, N.3    Boushey, C.J.4    Delp, E.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.