메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 6469-6477

Learning non-maximum suppression

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; ECONOMIC AND SOCIAL EFFECTS; NETWORK ARCHITECTURE; OBJECT RECOGNITION;

EID: 85041929620     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.685     Document Type: Conference Paper
Times cited : (494)

References (37)
  • 1
    • 84865611811 scopus 로고    scopus 로고
    • On detection of multiple object instances using hough transforms
    • 2
    • O. Barinova, V. Lempitsky, and P. Kholi. On detection of multiple object instances using hough transforms. PAMI, 2012. 2
    • (2012) PAMI
    • Barinova, O.1    Lempitsky, V.2    Kholi, P.3
  • 2
    • 80052912306 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • In 2
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010. 2
    • (2010) ECCV
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 3
    • 0028517731 scopus 로고
    • Detection and localization of faces on digital images
    • 3
    • G. Burel and D. Carel. Detection and localization of faces on digital images. Pattern Recognition Letters, 1994. 3
    • (1994) Pattern Recognition Letters
    • Burel, G.1    Carel, D.2
  • 4
    • 84887357644 scopus 로고    scopus 로고
    • Detection evolution with multi-order contextual co-occurrence
    • In 2
    • G. Chen, Y. Ding, J. Xiao, and T. X. Han. Detection evolution with multi-order contextual co-occurrence. In CVPR, 2013. 2
    • (2013) CVPR
    • Chen, G.1    Ding, Y.2    Xiao, J.3    Han, T.X.4
  • 5
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • In 2
    • J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015. 2
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • In 2
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 2
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 7
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. PAMI, 2010. 1, 2
    • (2010) PAMI
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 8
    • 78449267053 scopus 로고    scopus 로고
    • Pets2010: Dataset and challenge
    • In 6
    • J. Ferryman and A. Ellis. Pets2010: Dataset and challenge. In AVSS, 2010. 6
    • (2010) AVSS
    • Ferryman, J.1    Ellis, A.2
  • 9
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • 1, 2
    • R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2
    • (2015) ICCV
    • Girshick, R.1
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 2
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 84990056336 scopus 로고    scopus 로고
    • Identity mappings in deep residual networks
    • In 5
    • K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016. 5
    • (2016) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 12
    • 85044504034 scopus 로고    scopus 로고
    • End-to-end training of object class detectors for mean average precision
    • P. Henderson and V. Ferrari. End-to-end training of object class detectors for mean average precision. In ACCV, 2016. 2, 4
    • (2016) ACCV
    • Henderson, P.1    Ferrari, V.2
  • 13
    • 85041894571 scopus 로고    scopus 로고
    • A convnet for non-maximum suppression
    • In 2, 3, 4, 6
    • J. Hosang, R. Benenson, and B. Schiele. A convnet for non-maximum suppression. In GCPR, 2016. 2, 3, 4, 6
    • (2016) GCPR
    • Hosang, J.1    Benenson, R.2    Schiele, B.3
  • 15
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • 2
    • B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 2008. 2
    • (2008) IJCV
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 18
    • 84999027836 scopus 로고    scopus 로고
    • Learning convolutional neural networks for graphs
    • In 2
    • M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs. In ICML, 2016. 2
    • (2016) ICML
    • Niepert, M.1    Ahmed, M.2    Kutzkov, K.3
  • 19
    • 84887365811 scopus 로고    scopus 로고
    • Single-pedestrian detection aided by multi-pedestrian detection
    • In 2
    • W. Ouyang and X. Wang. Single-pedestrian detection aided by multi-pedestrian detection. In CVPR, 2013. 2
    • (2013) CVPR
    • Ouyang, W.1    Wang, X.2
  • 20
    • 84986308404 scopus 로고    scopus 로고
    • You only look once: Unified, real-time object detection
    • In 1
    • J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In CVPR, 2016. 1
    • (2016) CVPR
    • Redmon, J.1    Divvala, S.2    Girshick, R.3    Farhadi, A.4
  • 21
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • In 1, 2, 7
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015. 1, 2, 7
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 22
  • 23
    • 84959193526 scopus 로고    scopus 로고
    • Non-maximum suppression for object detection by passing messages between windows
    • In 2
    • R. Rothe, M. Guillaumin, and L. Van Gool. Non-maximum suppression for object detection by passing messages between windows. In ACCV, 2014. 2
    • (2014) ACCV
    • Rothe, R.1    Guillaumin, M.2    Van Gool, L.3
  • 24
    • 80052889458 scopus 로고    scopus 로고
    • Recognition using visual phrases
    • In 2
    • M. A. Sadeghi and A. Farhadi. Recognition using visual phrases. In CVPR, 2011. 2
    • (2011) CVPR
    • Sadeghi, M.A.1    Farhadi, A.2
  • 25
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • In 2
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014. 2
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 26
    • 84986272585 scopus 로고    scopus 로고
    • End-to-end people detection in crowded scenes
    • R. Stewart and M. Andriluka. End-to-end people detection in crowded scenes. In CVPR, 2016. 2, 4
    • (2016) CVPR
    • Stewart, R.1    Andriluka, M.2
  • 27
    • 84942382122 scopus 로고    scopus 로고
    • Subgraph decomposition for multi-target tracking
    • In 2
    • S. Tang, B. Andres, M. Andriluka, and B. Schiele. Subgraph decomposition for multi-target tracking. In CVPR, 2015. 2
    • (2015) CVPR
    • Tang, S.1    Andres, B.2    Andriluka, M.3    Schiele, B.4
  • 29
    • 84898407532 scopus 로고    scopus 로고
    • Detection and tracking of occluded people
    • In 2
    • S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of occluded people. In BMVC, 2012. 2
    • (2012) BMVC
    • Tang, S.1    Andriluka, M.2    Schiele, B.3
  • 30
    • 77956051102 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks and 3d brain image segmentation
    • 2
    • Z. Tu and X. Bai. Auto-context and its application to high-level vision tasks and 3d brain image segmentation. PAMI, 2010. 2
    • (2010) PAMI
    • Tu, Z.1    Bai, X.2
  • 31
    • 84986292940 scopus 로고    scopus 로고
    • Object localization in imagenet by looking out of the window
    • In 2
    • A. Vezhnevets and V. Ferrari. Object localization in imagenet by looking out of the window. In BMVC, 2015. 2
    • (2015) BMVC
    • Vezhnevets, A.1    Ferrari, V.2
  • 32
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • In 2
    • P. Viola and M. Jones. Robust real-time face detection. In IJCV, 2004. 2
    • (2004) IJCV
    • Viola, P.1    Jones, M.2
  • 33
    • 84959203164 scopus 로고    scopus 로고
    • End-to-end integration of a convolutional network, deformable parts model and non-maximum suppression
    • In 2
    • L. Wan, D. Eigen, and R. Fergus. End-to-end integration of a convolutional network, deformable parts model and non-maximum suppression. In CVPR, 2015. 2
    • (2015) CVPR
    • Wan, L.1    Eigen, D.2    Fergus, R.3
  • 34
    • 84898798283 scopus 로고    scopus 로고
    • Detecting partially occluded objects with an implicit shape model random field
    • In 2
    • P. Wohlhart, M. Donoser, P. M. Roth, and H. Bischof. Detecting partially occluded objects with an implicit shape model random field. In ACCV, 2012. 2
    • (2012) ACCV
    • Wohlhart, P.1    Donoser, M.2    Roth, P.M.3    Bischof, H.4
  • 35
    • 70350252420 scopus 로고    scopus 로고
    • Sliding-windows for rapid object class localization: A parallel technique
    • In 2
    • C. Wojek, G. Dorkó, A. Schulz, and B. Schiele. Sliding-windows for rapid object class localization: A parallel technique. In DAGM, 2008. 2
    • (2008) DAGM
    • Wojek, C.1    Dorkó, G.2    Schulz, A.3    Schiele, B.4
  • 36
    • 84957664417 scopus 로고    scopus 로고
    • Object detection by labeling superpixels
    • In 2
    • J. Yan, Y. Yu, X. Zhu, Z. Lei, and S. Z. Li. Object detection by labeling superpixels. In CVPR, 2015. 2
    • (2015) CVPR
    • Yan, J.1    Yu, Y.2    Zhu, X.3    Lei, Z.4    Li, S.Z.5
  • 37
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • In 2
    • J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012. 2
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.