메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 5107-5116

Object detection by labeling superpixels

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; COSTS; NEURAL NETWORKS; OBJECT RECOGNITION; PATTERN RECOGNITION; PIXELS;

EID: 84957664417     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299146     Document Type: Conference Paper
Times cited : (109)

References (62)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. PAMI, 2012.
    • (2012) PAMI
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 3
    • 84865611811 scopus 로고    scopus 로고
    • On detection of multiple object instances using hough transforms
    • O. Barinova, V. Lempitsky, and P. Kholi. On detection of multiple object instances using hough transforms. PAMI, 2012.
    • (2012) PAMI
    • Barinova, O.1    Lempitsky, V.2    Kholi, P.3
  • 4
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 5
    • 84941340655 scopus 로고    scopus 로고
    • Joint cascade face detection and alignment
    • Springer
    • D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun. Joint cascade face detection and alignment. In ECCV. Springer, 2014.
    • (2014) ECCV
    • Chen, D.1    Ren, S.2    Wei, Y.3    Cao, X.4    Sun, J.5
  • 6
    • 84906309797 scopus 로고    scopus 로고
    • BING: Binarized normed gradients for objectness estimation at 300fps
    • M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr. BING: Binarized normed gradients for objectness estimation at 300fps. In IEEE CVPR, 2014.
    • (2014) IEEE CVPR
    • Cheng, M.-M.1    Zhang, Z.2    Lin, W.-Y.3    Torr, P.H.S.4
  • 8
    • 84884917722 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR. IEEE, 2005.
    • (2005) CVPR. IEEE
    • Dalal, N.1    Triggs, B.2
  • 9
    • 84855348351 scopus 로고    scopus 로고
    • Fast approximate energy minimization with label costs
    • A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast approximate energy minimization with label costs. IJCV, 2012.
    • (2012) IJCV
    • Delong, A.1    Osokin, A.2    Isack, H.N.3    Boykov, Y.4
  • 10
    • 79953187637 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. IJCV, 2011.
    • (2011) IJCV
    • Desai, C.1    Ramanan, D.2    Fowlkes, C.3
  • 11
    • 84857435937 scopus 로고    scopus 로고
    • Pedestrian detection: An evaluation of the state of the art
    • P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. PAMI, 34, 2012.
    • (2012) PAMI, 34
    • Dollár, P.1    Wojek, C.2    Schiele, B.3    Perona, P.4
  • 14
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. PAMI, 2013.
    • (2013) PAMI
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
    • J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 2000.
    • (2000) The Annals of Statistics
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 84883248826 scopus 로고    scopus 로고
    • Class-specific hough forests for object detection
    • J. Gall and V. Lempitsky. Class-specific hough forests for object detection. In CVPR. IEEE, 2009.
    • (2009) CVPR. IEEE
    • Gall, J.1    Lempitsky, V.2
  • 20
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 22
    • 84858716911 scopus 로고    scopus 로고
    • Region-based segmentation and object detection
    • S. Gould, T. Gao, and D. Koller. Region-based segmentation and object detection. In NIPS, 2009.
    • (2009) NIPS
    • Gould, S.1    Gao, T.2    Koller, D.3
  • 24
    • 85081111493 scopus 로고    scopus 로고
    • How good are detection proposals, really
    • J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, really? In BMVC, 2014.
    • (2014) BMVC
    • Hosang, J.1    Benenson, R.2    Schiele, B.3
  • 27
    • 84959212200 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • H. Kaiming, Z. Xiangyu, R. Shaoqing, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • Kaiming, H.1    Xiangyu, Z.2    Shaoqing, R.3    Sun, J.4
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 29
    • 84887331623 scopus 로고    scopus 로고
    • Segmentation propagation in imagenet
    • Springer
    • D. Kuettel, M. Guillaumin, and V. Ferrari. Segmentation propagation in imagenet. In ECCV. Springer, 2012.
    • (2012) ECCV
    • Kuettel, D.1    Guillaumin, M.2    Ferrari, V.3
  • 30
    • 80052871895 scopus 로고    scopus 로고
    • Graph cut based inference with co-occurrence statistics
    • Springer
    • L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Graph cut based inference with co-occurrence statistics. In ECCV. Springer, 2010.
    • (2010) ECCV
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.4
  • 31
    • 79955365837 scopus 로고    scopus 로고
    • What, where and how many? Combining object detectors and crfs
    • Springer
    • L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr. What, where and how many? combining object detectors and crfs. In ECCV. Springer, 2010.
    • (2010) ECCV
    • Ladicky, L.1    Sturgess, P.2    Alahari, K.3    Russell, C.4    Torr, P.H.5
  • 32
    • 39749124915 scopus 로고    scopus 로고
    • Robust object detection with interleaved categorization and segmentation
    • B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 2008.
    • (2008) IJCV
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 35
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 36
    • 85026928800 scopus 로고    scopus 로고
    • Prime object proposals with randomized prim's algorithm
    • S. Manen, M. Guillaumin, and L. V. Gool. Prime object proposals with randomized prim's algorithm. In ICCV. IEEE, 2013.
    • (2013) ICCV. IEEE
    • Manen, S.1    Guillaumin, M.2    Gool, L.V.3
  • 40
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • Springer
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV. Springer, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 41
    • 84959193526 scopus 로고    scopus 로고
    • Non-maximum suppression for object detection by passing messages between windows
    • Springer
    • R. Rothe, M. Guillaumin, and L. Van Gool. Non-maximum suppression for object detection by passing messages between windows. In ACCV. Springer, 2014.
    • (2014) ACCV
    • Rothe, R.1    Guillaumin, M.2    Van Gool, L.3
  • 42
    • 0031672526 scopus 로고    scopus 로고
    • Neural network-based face detection
    • H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. PAMI, 1998.
    • (1998) PAMI
    • Rowley, H.1    Baluja, S.2    Kanade, T.3
  • 47
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013.
    • (2013) NIPS
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 48
    • 84907591679 scopus 로고    scopus 로고
    • Detection and tracking of occluded people
    • S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of occluded people. IJCV, 2014.
    • (2014) IJCV
    • Tang, S.1    Andriluka, M.2    Schiele, B.3
  • 49
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. In JMLR, 2005.
    • (2005) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 52
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • P. Viola and M. Jones. Robust real-time face detection. IJCV, 2004.
    • (2004) IJCV
    • Viola, P.1    Jones, M.2
  • 54
    • 85026929481 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV. IEEE, 2013.
    • (2013) ICCV. IEEE
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 55
    • 84937921067 scopus 로고    scopus 로고
    • Local decorrelation for improved pedestrian detection
    • J. H. H. Woonhyun Nam, Piotr Dollár. Local decorrelation for improved pedestrian detection. In NIPS, 2014.
    • (2014) NIPS
    • Woonhyun Nam, J.H.H.1    Dollár, P.2
  • 57
    • 84911434784 scopus 로고    scopus 로고
    • Robust multiresolution pedestrian detection in traffic scenes
    • J. Yan, X. Zhang, Z. Lei, S. Liao, and S. Z. Li. Robust multiresolution pedestrian detection in traffic scenes. In CVPR. IEEE, 2013.
    • (2013) CVPR. IEEE
    • Yan, J.1    Zhang, X.2    Lei, Z.3    Liao, S.4    Li, S.Z.5
  • 59
    • 84990047709 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR. IEEE, 2012.
    • (2012) CVPR. IEEE
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 60
    • 77955986833 scopus 로고    scopus 로고
    • Learning structural svms with latent variables
    • C.-N. J. Yu and T. Joachims. Learning structural svms with latent variables. In ICML. ACM, 2009.
    • (2009) ICML. ACM
    • Yu, C.-N.J.1    Joachims, T.2
  • 61
    • 84898678250 scopus 로고    scopus 로고
    • Face detection, pose estimation, and landmark localization in the wild
    • X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR. IEEE, 2012.
    • (2012) CVPR. IEEE
    • Zhu, X.1    Ramanan, D.2
  • 62
    • 84952018709 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • Springer
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV. Springer, 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.