메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 696-705

Unsupervised Action Discovery and Localization in Videos

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; COMBINATORIAL OPTIMIZATION; DIRECTED GRAPHS; IMAGE SEGMENTATION; ITERATIVE METHODS;

EID: 85041908490     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.82     Document Type: Conference Paper
Times cited : (75)

References (57)
  • 2
    • 84973882933 scopus 로고    scopus 로고
    • Action detection by implicit intentional motion clustering
    • W. Chen and J. J. Corso. Action detection by implicit intentional motion clustering. In ICCV, 2015
    • (2015) ICCV
    • Chen, W.1    Corso, J.J.2
  • 4
    • 84877748784 scopus 로고    scopus 로고
    • Detecting actions, poses, and objects with relational phraselets
    • C. Desai and D. Ramanan. Detecting actions, poses, and objects with relational phraselets. In ECCV. 2012
    • (2012) ECCV.
    • Desai, C.1    Ramanan, D.2
  • 5
    • 84959216468 scopus 로고    scopus 로고
    • Activitynet: A large-scale video benchmark for human activity understanding
    • B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In CVPR, 2015
    • (2015) CVPR
    • Fabian, C.1    Heilbron, B.G.2    Escorcia, V.3    Niebles, J.C.4
  • 6
  • 7
  • 8
    • 77953194241 scopus 로고    scopus 로고
    • Action detection in complex scenes with spatial and temporal ambiguities
    • Y. Hu, L. Cao, F. Lv, S. Yan, Y. Gong, and T. S. Huang. Action detection in complex scenes with spatial and temporal ambiguities. In ICCV, 2009
    • (2009) ICCV
    • Hu, Y.1    Cao, L.2    Lv, F.3    Yan, S.4    Gong, Y.5    Huang, T.S.6
  • 10
    • 84959235126 scopus 로고    scopus 로고
    • What do 15,000 object categories tell us about classifying and localizing actions
    • M. Jain, J. C. van Gemert, and C. G. Snoek. What do 15,000 object categories tell us about classifying and localizing actions In CVPR, 2015
    • (2015) CVPR
    • Jain, M.1    Van Gemert, J.C.2    Snoek, C.G.3
  • 14
    • 84911457884 scopus 로고    scopus 로고
    • A multigraph representation for improved unsupervised/semi-supervised learning of human actions
    • S. Jones and L. Shao. A multigraph representation for improved unsupervised/semi-supervised learning of human actions. In CVPR, 2014
    • (2014) CVPR
    • Jones, S.1    Shao, L.2
  • 15
    • 84911368077 scopus 로고    scopus 로고
    • Unsupervised spectral dual assignment clustering of human actions in context
    • S. Jones and L. Shao. Unsupervised spectral dual assignment clustering of human actions in context. In CVPR, 2014
    • (2014) CVPR
    • Jones, S.1    Shao, L.2
  • 17
    • 50649103739 scopus 로고    scopus 로고
    • Event detection in crowded videos
    • Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In ICCV, 2007
    • (2007) ICCV
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 18
    • 84863083227 scopus 로고    scopus 로고
    • Discriminative figurecentric models for joint action localization and recognition
    • T. Lan, Y. Wang, and G. Mori. Discriminative figurecentric models for joint action localization and recognition. In ICCV, 2011
    • (2011) ICCV
    • Lan, T.1    Wang, Y.2    Mori, G.3
  • 20
    • 84959217808 scopus 로고    scopus 로고
    • Human action segmentation with hierarchical supervoxel consistency
    • J. Lu, R. Xu, and J. J. Corso. Human action segmentation with hierarchical supervoxel consistency. In CVPR, 2015
    • (2015) CVPR
    • Lu, J.1    Xu, R.2    Corso, J.J.3
  • 21
    • 84898783317 scopus 로고    scopus 로고
    • Action recognition and localization by hierarchical spacetime segments
    • S. Ma, J. Zhang, N. Ikizler-Cinbis, and S. Sclaroff. Action recognition and localization by hierarchical spacetime segments. In ICCV, 2013
    • (2013) ICCV
    • Ma, S.1    Zhang, J.2    Ikizler-Cinbis, N.3    Sclaroff, S.4
  • 23
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. NIPS, 2002
    • (2002) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 24
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatialtemporal words
    • J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatialtemporal words. IJCV, 79(3), 2008
    • (2008) IJCV , vol.79 , Issue.3
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 26
    • 84911423364 scopus 로고    scopus 로고
    • Efficient action localization with approximately normalized fisher vectors
    • D. Oneata, J. Verbeek, and C. Schmid. Efficient action localization with approximately normalized fisher vectors. In CVPR, 2014
    • (2014) CVPR
    • Oneata, D.1    Verbeek, J.2    Schmid, C.3
  • 27
    • 0041939837 scopus 로고    scopus 로고
    • A new graph-theoretic approach to clustering and segmentation
    • M. Pavan and M. Pelillo. A new graph-theoretic approach to clustering and segmentation. In CVPR, 2003
    • (2003) CVPR
    • Pavan, M.1    Pelillo, M.2
  • 28
    • 77955993534 scopus 로고    scopus 로고
    • Dominant sets and pairwise clustering
    • M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. IEEE TPAMI, 29(1), 2007
    • (2007) IEEE TPAMI , vol.29 , Issue.1
    • Pavan, M.1    Pelillo, M.2
  • 29
    • 85041902452 scopus 로고    scopus 로고
    • Multi-region two-stream r-cnn for action detection
    • X. Peng and C. Schmid. Multi-region two-stream r-cnn for action detection. In ECCV, 2016
    • (2016) ECCV
    • Peng, X.1    Schmid, C.2
  • 30
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 31
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, 2015
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 32
    • 51949084792 scopus 로고    scopus 로고
    • Action Mach: A spatio-temporal maximum average correlation height filter for action recognition
    • M. Rodriguez, A. Javed, and M. Shah. Action mach: A spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008
    • (2008) CVPR
    • Rodriguez, M.1    Javed, A.2    Shah, M.3
  • 33
    • 50949105230 scopus 로고    scopus 로고
    • Spatial-temporal correlatons for unsupervised action classification
    • S. Savarese, A. DelPozo, J. C. Niebles, and L. Fei-Fei. Spatial-temporal correlatons for unsupervised action classification. In WMVC, 2008
    • (2008) WMVC
    • Savarese, S.1    DelPozo, A.2    Niebles, J.C.3    Fei-Fei, L.4
  • 34
    • 84899004990 scopus 로고    scopus 로고
    • Action is in the eye of the beholder: Eye-gaze driven model for spatio-temporal action localization
    • N. Shapovalova, M. Raptis, L. Sigal, and G. Mori. Action is in the eye of the beholder: Eye-gaze driven model for spatio-temporal action localization. In NIPS, 2013
    • (2013) NIPS
    • Shapovalova, N.1    Raptis, M.2    Sigal, L.3    Mori, G.4
  • 35
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE TPAMI, 22(8), 2000
    • (2000) IEEE TPAMI , vol.22 , Issue.8
    • Shi, J.1    Malik, J.2
  • 36
    • 84973931629 scopus 로고    scopus 로고
    • Action localization in videos through context walk
    • K. Soomro, H. Idrees, and M. Shah. Action localization in videos through context walk. In ICCV, 2015
    • (2015) ICCV
    • Soomro, K.1    Idrees, H.2    Shah, M.3
  • 38
    • 84986246311 scopus 로고    scopus 로고
    • Predicting the where and what of actors and actions through online action localization
    • K. Soomro, H. Idrees, and M. Shah. Predicting the where and what of actors and actions through online action localization. In CVPR, 2016
    • (2016) CVPR
    • Soomro, K.1    Idrees, H.2    Shah, M.3
  • 39
    • 84921837193 scopus 로고    scopus 로고
    • Action recognition in realistic sports videos
    • Springer
    • K. Soomro and A. R. Zamir. Action recognition in realistic sports videos. In Computer Vision in Sports, pages 181-208. Springer, 2014
    • (2014) Computer Vision in Sports , pp. 181-208
    • Soomro, K.1    Zamir, A.R.2
  • 41
    • 84887356306 scopus 로고    scopus 로고
    • Spatiotemporal deformable part models for action detection
    • Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013
    • (2013) CVPR
    • Tian, Y.1    Sukthankar, R.2    Shah, M.3
  • 42
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3d convolutional networks
    • D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015
    • (2015) ICCV
    • Tran, D.1    Bourdev, L.2    Fergus, R.3    Torresani, L.4    Paluri, M.5
  • 43
    • 84877744900 scopus 로고    scopus 로고
    • Max-margin structured output regression for spatio-temporal action localization
    • D. Tran and J. Yuan. Max-margin structured output regression for spatio-temporal action localization. In NIPS, 2012
    • (2012) NIPS
    • Tran, D.1    Yuan, J.2
  • 44
    • 84993939773 scopus 로고    scopus 로고
    • Improved scene identification and object detection on egocentric vision of daily activities
    • G. Vaca-Castano, S. Das, J. P. Sousa, N. D. Lobo, and M. Shah. Improved scene identification and object detection on egocentric vision of daily activities. CVIU, 156, 2017
    • (2017) CVIU , vol.156
    • Vaca-Castano, G.1    Das, S.2    Sousa, J.P.3    Lobo, N.D.4    Shah, M.5
  • 45
    • 84973913561 scopus 로고    scopus 로고
    • Apt: Action localization psroposals from dense trajectories
    • J. C. van Gemert, M. Jain, E. Gati, and C. G. Snoek. Apt: Action localization psroposals from dense trajectories. In BMVC, 2015
    • (2015) BMVC
    • Van Gemert, J.C.1    Jain, M.2    Gati, E.3    Snoek, C.G.4
  • 46
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 47
    • 84959205018 scopus 로고    scopus 로고
    • Video action detection with relational dynamic-poselets
    • L. Wang, Y. Qiao, and X. Tang. Video action detection with relational dynamic-poselets. In ECCV. 2014
    • (2014) ECCV.
    • Wang, L.1    Qiao, Y.2    Tang, X.3
  • 49
    • 84973931775 scopus 로고    scopus 로고
    • Learning to track for spatio-temporal action localization
    • P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to track for spatio-temporal action localization. In ICCV, 2015
    • (2015) ICCV
    • Weinzaepfel, P.1    Harchaoui, Z.2    Schmid, C.3
  • 50
    • 80052896502 scopus 로고    scopus 로고
    • A unified framework for locating and recognizing human actions
    • Y. Xie, H. Chang, Z. Li, L. Liang, X. Chen, and D. Zhao. A unified framework for locating and recognizing human actions. In CVPR, 2011
    • (2011) CVPR
    • Xie, Y.1    Chang, H.2    Li, Z.3    Liang, L.4    Chen, X.5    Zhao, D.6
  • 51
    • 84878144777 scopus 로고    scopus 로고
    • Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions
    • Y. Yang, I. Saleemi, and M. Shah. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions. IEEE TPAMI, 35(7), 2013
    • (2013) IEEE TPAMI , vol.35 , Issue.7
    • Yang, Y.1    Saleemi, I.2    Shah, M.3
  • 53
    • 84986253505 scopus 로고    scopus 로고
    • Endto-end learning of action detection from frame glimpses in videos
    • S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. Endto-end learning of action detection from frame glimpses in videos. In CVPR, 2016
    • (2016) CVPR
    • Yeung, S.1    Russakovsky, O.2    Mori, G.3    Fei-Fei, L.4
  • 54
    • 79957463368 scopus 로고    scopus 로고
    • Fast action detection via discriminative random forest voting and top-k subvolume search
    • G. Yu, N. A. Goussies, J. Yuan, and Z. Liu. Fast action detection via discriminative random forest voting and top-k subvolume search. IEEE Transactions on Multimedia, 13(3), 2011
    • (2011) IEEE Transactions on Multimedia , vol.13 , Issue.3
    • Yu, G.1    Goussies, N.A.2    Yuan, J.3    Liu, Z.4
  • 55
    • 84959191147 scopus 로고    scopus 로고
    • Fast action proposals for human action detection and search
    • G. Yu and J. Yuan. Fast action proposals for human action detection and search. In CVPR, 2015
    • (2015) CVPR
    • Yu, G.1    Yuan, J.2
  • 56
    • 80051863221 scopus 로고    scopus 로고
    • Discriminative video pattern search for efficient action detection
    • J. Yuan, Z. Liu, and Y. Wu. Discriminative video pattern search for efficient action detection. IEEE TPAMI, 33(9), 2011
    • (2011) IEEE TPAMI , vol.33 , Issue.9
    • Yuan, J.1    Liu, Z.2    Wu, Y.3
  • 57
    • 84925135568 scopus 로고    scopus 로고
    • Learning spatial and temporal extents of human actions for action detection
    • Z. Zhou, F. Shi, andW.Wu. Learning spatial and temporal extents of human actions for action detection. IEEE Transactions on Multimedia, 17(4), 2015.
    • (2015) IEEE Transactions on Multimedia , vol.17 , Issue.4
    • Zhou, Z.1    Shi, F.2    Wu, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.