-
4
-
-
84911442009
-
Actionness ranking with lattice conditional ordinal random fields
-
W. Chen, C. Xiong, R. Xu, and J. J. Corso. Actionness ranking with lattice conditional ordinal random fields. In CVPR, 2014.
-
(2014)
CVPR
-
-
Chen, W.1
Xiong, C.2
Xu, R.3
Corso, J.J.4
-
5
-
-
77956006912
-
Exploiting hierarchical context on a large database of object categories
-
M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, 2010.
-
(2010)
CVPR
-
-
Choi, M.J.1
Lim, J.J.2
Torralba, A.3
Willsky, A.S.4
-
6
-
-
84877748784
-
Detecting actions, poses, and objects with relational phraselets
-
C. Desai and D. Ramanan. Detecting actions, poses, and objects with relational phraselets. In ECCV. 2012.
-
(2012)
ECCV
-
-
Desai, C.1
Ramanan, D.2
-
7
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE TPAMI, 32(9), 2010.
-
(2010)
IEEE TPAMI
, vol.32
, Issue.9
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
8
-
-
35148899327
-
Objects in action: An approach for combining action understanding and object perception
-
A. Gupta and L. S. Davis. Objects in action: An approach for combining action understanding and object perception. In CVPR, 2007.
-
(2007)
CVPR
-
-
Gupta, A.1
Davis, L.S.2
-
9
-
-
77953208298
-
Selection and context for action recognition
-
D. Han, L. Bo, and C. Sminchisescu. Selection and context for action recognition. In ICCV, 2009.
-
(2009)
ICCV
-
-
Han, D.1
Bo, L.2
Sminchisescu, C.3
-
10
-
-
70449582001
-
Learning spatial context: Using stuff to find things
-
G. Heitz and D. Koller. Learning spatial context: Using stuff to find things. In ECCV. 2008.
-
(2008)
ECCV
-
-
Heitz, G.1
Koller, D.2
-
11
-
-
77953194241
-
Action detection in complex scenes with spatial and temporal ambiguities
-
Y. Hu, L. Cao, F. Lv, S. Yan, Y. Gong, and T. S. Huang. Action detection in complex scenes with spatial and temporal ambiguities. In ICCV, 2009.
-
(2009)
ICCV
-
-
Hu, Y.1
Cao, L.2
Lv, F.3
Yan, S.4
Gong, Y.5
Huang, T.S.6
-
12
-
-
79958737093
-
Object, scene and actions: Combining multiple features for human action recognition
-
N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions: Combining multiple features for human action recognition. In ECCV. 2010.
-
(2010)
ECCV
-
-
Ikizler-Cinbis, N.1
Sclaroff, S.2
-
13
-
-
84911453664
-
Action localization with tubelets from motion
-
M. Jain, J. Gemert, H. Jegou, P. Bouthemy, and C. Snoek. Action localization with tubelets from motion. In CVPR, 2014.
-
(2014)
CVPR
-
-
Jain, M.1
Gemert, J.2
Jegou, H.3
Bouthemy, P.4
Snoek, C.5
-
14
-
-
84959235126
-
What do 15, 000 object categories tell us about classifying and localizing actions? in
-
M. Jain, J. C. van Gemert, and C. G. Snoek. What do 15, 000 object categories tell us about classifying and localizing actions? In CVPR, 2015.
-
(2015)
CVPR
-
-
Jain, M.1
Van Gemert, J.C.2
Snoek, C.G.3
-
15
-
-
84898819791
-
Towards understanding action recognition
-
H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards understanding action recognition. In ICCV, 2013.
-
(2013)
ICCV
-
-
Jhuang, H.1
Gall, J.2
Zuffi, S.3
Schmid, C.4
Black, M.J.5
-
16
-
-
84905052261
-
-
Y.-G. Jiang, J. Liu, A. Roshan Zamir, I. Laptev, M. Piccardi, M. Shah, and R. Sukthankar. THUMOS challenge: Action recognition with a large number of classes. http: //crcv. ucf. edu/ICCV13-Action-Workshop/, 2013.
-
(2013)
THUMOS Challenge: Action Recognition with A Large Number of Classes.
-
-
Jiang, Y.-G.1
Liu, J.2
Roshan Zamir, A.3
Laptev, I.4
Piccardi, M.5
Shah, M.6
Sukthankar, R.7
-
18
-
-
84863083227
-
Discriminative figure-centric models for joint action localization and recognition
-
T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models for joint action localization and recognition. In ICCV, 2011.
-
(2011)
ICCV
-
-
Lan, T.1
Wang, Y.2
Mori, G.3
-
19
-
-
84898783317
-
Action recognition and localization by hierarchical space-time segments
-
S. Ma, J. Zhang, N. Ikizler-Cinbis, and S. Sclaroff. Action recognition and localization by hierarchical space-time segments. In ICCV, 2013.
-
(2013)
ICCV
-
-
Ma, S.1
Zhang, J.2
Ikizler-Cinbis, N.3
Sclaroff, S.4
-
21
-
-
84866714589
-
Fast search in hamming space with multi-index hashing
-
M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space with multi-index hashing. In CVPR, 2012.
-
(2012)
CVPR
-
-
Norouzi, M.1
Punjani, A.2
Fleet, D.J.3
-
23
-
-
84911423364
-
Efficient action localization with approximately normalized fisher vectors
-
D. Oneata, J. Verbeek, and C. Schmid. Efficient action localization with approximately normalized fisher vectors. In CVPR, 2014.
-
(2014)
CVPR
-
-
Oneata, D.1
Verbeek, J.2
Schmid, C.3
-
24
-
-
51949084792
-
Action Mach: A spatio-temporal maximum average correlation height filter for action recognition
-
M. Rodriguez, A. Javed, and M. Shah. Action mach: A spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008.
-
(2008)
CVPR
-
-
Rodriguez, M.1
Javed, A.2
Shah, M.3
-
25
-
-
70450214829
-
Hierarchical spatio-temporal context modeling for action recognition
-
J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li. Hierarchical spatio-temporal context modeling for action recognition. In CVPR, 2009.
-
(2009)
CVPR
-
-
Sun, J.1
Wu, X.2
Yan, S.3
Cheong, L.-F.4
Chua, T.-S.5
Li, J.6
-
26
-
-
84887356306
-
Spatiotemporal deformable part models for action detection
-
Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part models for action detection. In CVPR, 2013.
-
(2013)
CVPR
-
-
Tian, Y.1
Sukthankar, R.2
Shah, M.3
-
27
-
-
84877744900
-
Max-margin structured output regression for spatio-temporal action localization
-
D. Tran and J. Yuan. Max-margin structured output regression for spatio-temporal action localization. In NIPS, 2012.
-
(2012)
NIPS
-
-
Tran, D.1
Yuan, J.2
-
28
-
-
84891607575
-
Video event detection: From subvolume localization to spatiotemporal path search
-
D. Tran, J. Yuan, and D. Forsyth. Video event detection: From subvolume localization to spatiotemporal path search. IEEE TPAMI, 36(2), 2014.
-
(2014)
IEEE TPAMI
, vol.36
, Issue.2
-
-
Tran, D.1
Yuan, J.2
Forsyth, D.3
-
29
-
-
84881160857
-
Selective search for object recognition
-
J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders. Selective search for object recognition. IJCV, 104(2), 2013.
-
(2013)
IJCV
, vol.104
, Issue.2
-
-
Uijlings, J.R.1
De Van Sande, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
30
-
-
84898805910
-
Action recognition with improved trajectories
-
H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
-
(2013)
ICCV
-
-
Wang, H.1
Schmid, C.2
-
31
-
-
84959205018
-
Video action detection with relational dynamic-poselets
-
L. Wang, Y. Qiao, and X. Tang. Video action detection with relational dynamic-poselets. In ECCV. 2014.
-
(2014)
ECCV
-
-
Wang, L.1
Qiao, Y.2
Tang, X.3
-
32
-
-
84894532116
-
Detecting human action as the spatio-temporal tube of maximum mutual information
-
T. Wang, S. Wang, and X. Ding. Detecting human action as the spatio-temporal tube of maximum mutual information. IEEE TCSVT, 24(2), 2014.
-
(2014)
IEEE TCSVT
, vol.24
, Issue.2
-
-
Wang, T.1
Wang, S.2
Ding, X.3
-
33
-
-
78751648503
-
A survey of visionbased methods for action representation, segmentation and recognition
-
D. Weinland, R. Ronfard, and E. Boyer. A survey of visionbased methods for action representation, segmentation and recognition. CVIU, 115(2), 2011.
-
(2011)
CVIU
, vol.115
, Issue.2
-
-
Weinland, D.1
Ronfard, R.2
Boyer, E.3
-
34
-
-
80052908096
-
Action recognition using context and appearance distribution features
-
X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and appearance distribution features. In CVPR, 2011.
-
(2011)
CVPR
-
-
Wu, X.1
Xu, D.2
Duan, L.3
Luo, J.4
-
35
-
-
80052896502
-
A unified framework for locating and recognizing human actions
-
Y. Xie, H. Chang, Z. Li, L. Liang, X. Chen, and D. Zhao. A unified framework for locating and recognizing human actions. In CVPR, 2011.
-
(2011)
CVPR
-
-
Xie, Y.1
Chang, H.2
Li, Z.3
Liang, L.4
Chen, X.5
Zhao, D.6
-
36
-
-
79957463368
-
Fast action detection via discriminative random forest voting and top-k subvolume search
-
G. Yu, N. A. Goussies, J. Yuan, and Z. Liu. Fast action detection via discriminative random forest voting and top-k subvolume search. Multimedia, IEEE Transactions on, 13(3), 2011.
-
(2011)
Multimedia, IEEE Transactions on
, vol.13
, Issue.3
-
-
Yu, G.1
Goussies, N.A.2
Yuan, J.3
Liu, Z.4
-
37
-
-
84959191147
-
Fast action proposals for human action detection and search
-
G. Yu and J. Yuan. Fast action proposals for human action detection and search. In CVPR, 2015.
-
(2015)
CVPR
-
-
Yu, G.1
Yuan, J.2
-
38
-
-
80051863221
-
Discriminative video pattern search for efficient action detection
-
J. Yuan, Z. Liu, and Y. Wu. Discriminative video pattern search for efficient action detection. IEEE TPAMI, 33(9), 2011.
-
(2011)
IEEE TPAMI
, vol.33
, Issue.9
-
-
Yuan, J.1
Liu, Z.2
Wu, Y.3
-
39
-
-
77951961687
-
Motion context: A new representation for human action recognition
-
Z. Zhang, Y. Hu, S. Chan, and L.-T. Chia. Motion context: A new representation for human action recognition. In ECCV. 2008.
-
(2008)
ECCV
-
-
Zhang, Z.1
Hu, Y.2
Chan, S.3
Chia, L.-T.4
-
40
-
-
84925135568
-
Learning spatial and temporal extents of human actions for action detection
-
Z. Zhou, F. Shi, and W. Wu. Learning spatial and temporal extents of human actions for action detection. Multimedia, IEEE Transactions on, 17(4), 2015.
-
(2015)
Multimedia, IEEE Transactions on
, vol.17
, Issue.4
-
-
Zhou, Z.1
Shi, F.2
Wu, W.3
|