메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3192-3199

Towards understanding action recognition

Author keywords

action recognition; annotation; dataset; JHMDB; optical flow estimation; pose estimation

Indexed keywords

ALGORITHMS; DATA PROCESSING; MOTION ESTIMATION; OPTICAL FLOWS;

EID: 84898819791     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.396     Document Type: Conference Paper
Times cited : (947)

References (36)
  • 1
    • 78149356001 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. ECCV, pp. 168-181, 2010.
    • (2010) ECCV , pp. 168-181
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 2
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose annotations. ICCV, pp. 1365-1372, 2009.
    • (2009) ICCV , pp. 1365-1372
    • Bourdev, L.1    Malik, J.2
  • 3
    • 0029215677 scopus 로고
    • Recognition of human body motion using phase space constraints
    • L. Campbell and A. Bobick. Recognition of human body motion using phase space constraints. ICCV, pp. 624-630, 1995.
    • (1995) ICCV , pp. 624-630
    • Campbell, L.1    Bobick, A.2
  • 4
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM TIST, 2:27:1-27:27, 2011.
    • (2011) ACM TIST , vol.2 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal, , and B. Triggs. Histograms of oriented gradients for human detection. CVPR, pp. 886-893, 2005.
    • (2005) CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 6
    • 33745821718 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • N. Dalal, , B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. ECCV, pp. 428-441, 2006.
    • (2006) ECCV , pp. 428-441
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 7
    • 84887344431 scopus 로고    scopus 로고
    • Human pose estimation using body parts dependent joint regressors
    • M. Dantone, J. Gall, C. Leistner, and L. Van Gool. Human pose estimation using body parts dependent joint regressors. CVPR, pp. 3041-3048, 2013.
    • (2013) CVPR , pp. 3041-3048
    • Dantone, M.1    Gall, J.2    Leistner, C.3    Van Gool, L.4
  • 8
    • 84898906904 scopus 로고    scopus 로고
    • Better appearance models for pictorial structures
    • M. Eichner and V. Ferrari. Better appearance models for pictorial structures. BMVC, pp. 3.1-3.11, 2009.
    • (2009) BMVC , pp. 31-311
    • Eichner, M.1    Ferrari, V.2
  • 9
    • 35248856569 scopus 로고    scopus 로고
    • Two-frame motion estimation based on polynomial expansion
    • G. Farneback. Two-frame motion estimation based on polynomial expansion. Image Analysis, pp. 363-370, 2003.
    • (2003) Image Analysis , pp. 363-370
    • Farneback, G.1
  • 10
    • 51949088307 scopus 로고    scopus 로고
    • Progressive search space reduction for human pose estimation
    • V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. CVPR, pp. 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Ferrari, V.1    Marin-Jimenez, M.2    Zisserman, A.3
  • 11
    • 84867841321 scopus 로고    scopus 로고
    • Diagnosing error in object detectors
    • D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. ECCV, pp. 340-353, 2012.
    • (2012) ECCV , pp. 340-353
    • Hoiem, D.1    Chodpathumwan, Y.2    Dai, Q.3
  • 12
    • 84903127719 scopus 로고    scopus 로고
    • Human 3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments
    • C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human 3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments. PAMI, 2014.
    • (2014) PAMI
    • Ionescu, C.1    Papava, D.2    Olaru, V.3    Sminchisescu, C.4
  • 13
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. BMVC, pp. 12.1-12.11, 2010.
    • (2010) BMVC , pp. 121-1211
    • Johnson, S.1    Everingham, M.2
  • 14
    • 84856682691 scopus 로고    scopus 로고
    • HMDB: A large video database for human motion recognition
    • H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large video database for human motion recognition. ICCV, pp. 2556-2563, 2011.
    • (2011) ICCV , pp. 2556-2563
    • Kuehne, H.1    Jhuang, H.2    Garrote, E.3    Poggio, T.4    Serre, T.5
  • 18
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. Niebles, C. Chen, and L. Fei-Fei. Modeling temporal structure of decomposable motion segments for activity classification. ECCV, pp. 392-405, 2010.
    • (2010) ECCV , pp. 392-405
    • Niebles, J.1    Chen, C.2    Fei-Fei, L.3
  • 19
    • 84875595728 scopus 로고    scopus 로고
    • Berkeley MHAD: A comprehensive multimodal human action database
    • F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Berkeley MHAD: A comprehensive multimodal human action database. WACV, pp. 53-60, 2013.
    • (2013) WACV , pp. 53-60
    • Ofli, F.1    Chaudhry, R.2    Kurillo, G.3    Vidal, R.4    Bajcsy, R.5
  • 20
    • 77955988502 scopus 로고    scopus 로고
    • The role of features algorithms and data in visual recognition
    • D. Parikh and C. L. Zitnick. The role of features, algorithms and data in visual recognition. CVPR, pp. 2328-2335, 2010.
    • (2010) CVPR , pp. 2328-2335
    • Parikh, D.1    Zitnick, C.L.2
  • 21
    • 84879553900 scopus 로고    scopus 로고
    • Recognizing 50 human action categories of web videos
    • K. Reddy and M. Shah. Recognizing 50 human action categories of web videos. MVA, 24(5):971-981, 2013.
    • (2013) MVA , vol.24 , Issue.5 , pp. 971-981
    • Reddy, K.1    Shah, M.2
  • 22
    • 84866710901 scopus 로고    scopus 로고
    • A database for fine grained activity detection of cooking activities
    • M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity detection of cooking activities. CVPR, pp. 1194-1201, 2012.
    • (2012) CVPR , pp. 1194-1201
    • Rohrbach, M.1    Amin, S.2    Andriluka, M.3    Schiele, B.4
  • 23
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. GrabCut: Interactive foreground extraction using iterated graph cuts. SIGGRAPH, pp. 309-314, 2004.
    • (2004) SIGGRAPH , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 24
    • 80052890828 scopus 로고    scopus 로고
    • Parsing human motion with stretchable models
    • B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. CVPR, pp. 1281-1288, 2011.
    • (2011) CVPR , pp. 1281-1288
    • Sapp, B.1    Weiss, D.2    Taskar, B.3
  • 25
    • 75149150235 scopus 로고    scopus 로고
    • HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
    • L. Sigal, A. Balan, and M. Black. HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV, 87(1):4-27, 2010.
    • (2010) IJCV , vol.87 , Issue.1 , pp. 4-27
    • Sigal, L.1    Balan, A.2    Black, M.3
  • 26
    • 84856661036 scopus 로고    scopus 로고
    • Action recognition in cluttered dynamic scenes using pose-specific part models
    • V. K. Singh and R. Nevatia. Action recognition in cluttered dynamic scenes using pose-specific part models. ICCV, pp. 113-120, 2011.
    • (2011) ICCV , pp. 113-120
    • Singh, V.K.1    Nevatia, R.2
  • 27
    • 84898799899 scopus 로고    scopus 로고
    • A quantitative analysis of current practices in optical flow estimation and the principles behind them
    • To appear
    • D. Sun, S. Roth, and M. Black. A quantitative analysis of current practices in optical flow estimation and the principles behind them. IJCV, to appear, 2013.
    • (2013) IJCV
    • Sun, D.1    Roth, S.2    Black, M.3
  • 28
    • 77953200311 scopus 로고    scopus 로고
    • The TUM kitchen data set of everyday manipulation activities for motion tracking and action recognition
    • M. Tenorth, J. Bandouch, and M. Beetz. The TUM kitchen data set of everyday manipulation activities for motion tracking and action recognition. THEMIS, pp. 1089-1096, 2009.
    • (2009) THEMIS , pp. 1089-1096
    • Tenorth, M.1    Bandouch, J.2    Beetz, M.3
  • 29
    • 84898433295 scopus 로고    scopus 로고
    • Modeling motion of body parts for action recognition
    • K. Tran, I. Kakadiaris, and S. Shah. Modeling motion of body parts for action recognition. BMVC, pp. 64.1-64.12, 2011.
    • (2011) BMVC , pp. 641-6412
    • Tran, K.1    Kakadiaris, I.2    Shah, S.3
  • 30
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • H. Wang, A. Kl̈aser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 103(1):60-79, 2013.
    • (2013) IJCV , vol.103 , Issue.1 , pp. 60-79
    • Wang, H.1    Kl̈aser, A.2    Schmid, C.3    Liu, C.-L.4
  • 31
    • 78751648503 scopus 로고    scopus 로고
    • A survey of visionbased methods for action representation, segmentation and recognition
    • D. Weinland, R. Ronfard, and E. Boyer. A survey of visionbased methods for action representation, segmentation and recognition. CVIU, 115(2):224-241, 2010.
    • (2010) CVIU , vol.115 , Issue.2 , pp. 224-241
    • Weinland, D.1    Ronfard, R.2    Boyer, E.3
  • 32
    • 0033079099 scopus 로고    scopus 로고
    • Parameterized modeling and recognition of activities
    • Y. Yacoob and M. Black. Parameterized modeling and recognition of activities. CVIU, 73(2):232-247, 1999.
    • (1999) CVIU , vol.73 , Issue.2 , pp. 232-247
    • Yacoob, Y.1    Black, M.2
  • 33
    • 84911420008 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • To appear
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. PAMI, to appear.
    • PAMI
    • Yang, Y.1    Ramanan, D.2
  • 34
    • 84863188724 scopus 로고    scopus 로고
    • Coupled action recognition and pose estimation from multiple views
    • A. Yao, J. Gall, and L. Van Gool. Coupled action recognition and pose estimation from multiple views. IJCV, 100(1):16-37, 2012.
    • (2012) IJCV , vol.100 , Issue.1 , pp. 16-37
    • Yao, A.1    Gall, J.2    Van Gool, L.3
  • 36
    • 84866682756 scopus 로고    scopus 로고
    • From pictorial structures to deformable structures
    • S. Zuffi, O. Freifeld, and M. Black. From pictorial structures to deformable structures. CVPR, pp. 3546-3553, 2012.
    • (2012) CVPR , pp. 3546-3553
    • Zuffi, S.1    Freifeld, O.2    Black, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.