메뉴 건너뛰기




Volumn , Issue , 2017, Pages 185-190

Deep convolutional neural networks for the classification of snapshot mosaic hyperspectral imagery

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; IMAGE CLASSIFICATION; LEARNING SYSTEMS; NEURAL NETWORKS; SPECTROSCOPY;

EID: 85041506038     PISSN: None     EISSN: 24701173     Source Type: Conference Proceeding    
DOI: 10.2352/ISSN.2470-1173.2017.17.COIMG-445     Document Type: Conference Paper
Times cited : (24)

References (35)
  • 2
    • 84885455739 scopus 로고    scopus 로고
    • Review of snapshot spectral imaging technologies
    • N. Hagen, and M. W. Kudenov, Review of snapshot spectral imaging technologies, Optical Engineering 52(9), 090901-090901, (2013).
    • (2013) Optical Engineering , vol.52 , Issue.9 , pp. 090901
    • Hagen, N.1    Kudenov, M.W.2
  • 3
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remotesensing images with support vector Machines
    • F. Melgani and L. Bruzzone, Classification of hyperspectral remotesensing images with support vector machines, IEEE Trans. Geosci. Remote Sensing, Vol. 42, no. 8, pp. 1778-1790, (2004).
    • (2004) IEEE Trans. Geosci. Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 4
    • 84926675034 scopus 로고    scopus 로고
    • Compressed hyperspectral sensing
    • International Society for Optics and Photonics
    • G. Tsagkatakis, and P. Tsakalides, Compressed hyperspectral sensing, IS & T/SPIE Electronic Imaging, International Society for Optics and Photonics. (2015).
    • (2015) IS & T/SPIE Electronic Imaging
    • Tsagkatakis, G.1    Tsakalides, P.2
  • 5
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • The proceedings of the seventh IEEE international conference on
    • D. G. Lowe (1999). Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on (Vol. 2, pp. 1150-1157).
    • (1999) Computer Vision, 1999 , vol.2 , pp. 1150-1157
    • Lowe, D.G.1
  • 8
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • S. Kumar, J. Ghosh, and M.M. Crawford (2001). Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Transactions on Geoscience and remote sensing, 39(7), 1368-1379.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 9
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In ICDAR (Vol. 3, pp. 958-962).
    • ICDAR , vol.3 , pp. 958-962
    • Simard, P.Y.1    Steinkraus, D.2    Platt, J.C.3
  • 11
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector Machine classifiers
    • J.A. Suykens, and J. Vandewalle (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 16
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature 521.7553 (2015): 436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 17
    • 84988487454 scopus 로고    scopus 로고
    • Deep feature learning for hyperspectral image classification and land cover estimation
    • G. Tsagkatakis, and P. Tsakalides. Deep Feature Learning for Hyperspectral Image Classification and Land Cover Estimation. ESA Symbosium, 2016.
    • (2016) ESA Symbosium
    • Tsagkatakis, G.1    Tsakalides, P.2
  • 22
    • 84967166415 scopus 로고    scopus 로고
    • Large patch convolutional neural networks for the scene classification of high spatial resolution imagery
    • Y. Zhong, F. Fei, and L. Zhang. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery. Journal of Applied Remote Sensing, 10(2):025006-025006, 2016.
    • (2016) Journal of Applied Remote Sensing , vol.10 , Issue.2 , pp. 025006
    • Zhong, Y.1    Fei, F.2    Zhang, L.3
  • 24
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi(2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232-6251.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 25
    • 84930423638 scopus 로고    scopus 로고
    • Spectralspatial classification of hyperspectral images using deep convolutional neural networks
    • J. Yue, W. Zhao, S. Mao, and H. Liu. Spectralspatial classification of hyperspectral images using deep convolutional neural networks. In Remote Sensing Letters, Vol. 6, no. 6, pp. 468-477, 2015.
    • (2015) Remote Sensing Letters , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 28
    • 85045743749 scopus 로고    scopus 로고
    • Comparing image classification methods: K-nearest-neighbor and support-vector-machines
    • J. I. N. H. O. KIM, B. S. Kim, and S. Savarese (2012). Comparing image classification methods: K-nearest-neighbor and support-vector-machines. Ann Arbor, 1001, 48109-2122.
    • (2012) Ann Arbor , vol.1001 , pp. 2122-48109
    • Kim, J.I.N.H.O.1    Kim, B.S.2    Savarese, S.3
  • 30
    • 65349153245 scopus 로고    scopus 로고
    • Classification: Basic concepts, decision trees, and model evaluation
    • P. N. Tan, M. Steinbach, and & V. Kumar (2006). Classification: basic concepts, decision trees, and model evaluation. Introduction to data mining, 1, 145-205.
    • (2006) Introduction to Data Mining , vol.1 , pp. 145-205
    • Tan, P.N.1    Steinbach, M.2    Kumar, V.3
  • 31
    • 84962569483 scopus 로고    scopus 로고
    • Deep supervised learning for hyperspectral data classification through convolutional neural networks
    • IEEE
    • K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In IEEE IGARSS. IEEE, 2015, pp. 4959-4962.
    • (2015) IEEE IGARSS , pp. 4959-4962
    • Makantasis, K.1    Karantzalos, K.2    Doulamis, A.3    Doulamis, N.4
  • 33
    • 84904687441 scopus 로고    scopus 로고
    • Sparse autoencoder
    • A. Ng. "Sparse autoencoder." CS294A Lecture notes 72 (2011): 1-19.
    • (2011) CS294A Lecture Notes , vol.72 , pp. 1-19
    • Ng, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.