-
1
-
-
84888349041
-
Hyperspectral remote sensing data analysis and future challenges
-
J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. M. Nasrabadi, and J. Chanussot, Hyperspectral remote sensing data analysis and future challenges, Geoscience and Remote Sensing Magazine, IEEE, 1(2), pg. 6-36. (2013).
-
(2013)
Geoscience and Remote Sensing Magazine, IEEE
, vol.1
, Issue.2
, pp. 6-36
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
Camps-Valls, G.3
Scheunders, P.4
Nasrabadi, N.M.5
Chanussot, J.6
-
2
-
-
84885455739
-
Review of snapshot spectral imaging technologies
-
N. Hagen, and M. W. Kudenov, Review of snapshot spectral imaging technologies, Optical Engineering 52(9), 090901-090901, (2013).
-
(2013)
Optical Engineering
, vol.52
, Issue.9
, pp. 090901
-
-
Hagen, N.1
Kudenov, M.W.2
-
3
-
-
4344614511
-
Classification of hyperspectral remotesensing images with support vector Machines
-
F. Melgani and L. Bruzzone, Classification of hyperspectral remotesensing images with support vector machines, IEEE Trans. Geosci. Remote Sensing, Vol. 42, no. 8, pp. 1778-1790, (2004).
-
(2004)
IEEE Trans. Geosci. Remote Sensing
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
4
-
-
84926675034
-
Compressed hyperspectral sensing
-
International Society for Optics and Photonics
-
G. Tsagkatakis, and P. Tsakalides, Compressed hyperspectral sensing, IS & T/SPIE Electronic Imaging, International Society for Optics and Photonics. (2015).
-
(2015)
IS & T/SPIE Electronic Imaging
-
-
Tsagkatakis, G.1
Tsakalides, P.2
-
5
-
-
0033284915
-
Object recognition from local scale-invariant features
-
The proceedings of the seventh IEEE international conference on
-
D. G. Lowe (1999). Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on (Vol. 2, pp. 1150-1157).
-
(1999)
Computer Vision, 1999
, vol.2
, pp. 1150-1157
-
-
Lowe, D.G.1
-
8
-
-
0035391738
-
Best-bases feature extraction algorithms for classification of hyperspectral data
-
S. Kumar, J. Ghosh, and M.M. Crawford (2001). Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Transactions on Geoscience and remote sensing, 39(7), 1368-1379.
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.7
, pp. 1368-1379
-
-
Kumar, S.1
Ghosh, J.2
Crawford, M.M.3
-
9
-
-
84945900998
-
Best practices for convolutional neural networks applied to visual document analysis
-
P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In ICDAR (Vol. 3, pp. 958-962).
-
ICDAR
, vol.3
, pp. 958-962
-
-
Simard, P.Y.1
Steinkraus, D.2
Platt, J.C.3
-
11
-
-
0032638628
-
Least squares support vector Machine classifiers
-
J.A. Suykens, and J. Vandewalle (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.1
Vandewalle, J.2
-
16
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature 521.7553 (2015): 436-444.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
17
-
-
84988487454
-
Deep feature learning for hyperspectral image classification and land cover estimation
-
G. Tsagkatakis, and P. Tsakalides. Deep Feature Learning for Hyperspectral Image Classification and Land Cover Estimation. ESA Symbosium, 2016.
-
(2016)
ESA Symbosium
-
-
Tsagkatakis, G.1
Tsakalides, P.2
-
19
-
-
0030737097
-
Face recognition: A convolutional neural-network approach
-
S. Lawrence, C. L. Giles, A.C. Tsoi, and A.D. Back (1997). Face recognition: A convolutional neural-network approach. IEEE transactions on neural networks, 8(1), 98-113.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.1
, pp. 98-113
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
Back, A.D.4
-
21
-
-
84962523390
-
Building detection in very high resolution multispectral data with deep learning features
-
IEEE
-
M. Vakalopoulou, K. Karantzalos, N. Komodakis, and N. Paragios. Building detection in very high resolution multispectral data with deep learning features. In Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, pages 1873-1876. IEEE, 2015.
-
(2015)
Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International
, pp. 1873-1876
-
-
Vakalopoulou, M.1
Karantzalos, K.2
Komodakis, N.3
Paragios, N.4
-
22
-
-
84967166415
-
Large patch convolutional neural networks for the scene classification of high spatial resolution imagery
-
Y. Zhong, F. Fei, and L. Zhang. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery. Journal of Applied Remote Sensing, 10(2):025006-025006, 2016.
-
(2016)
Journal of Applied Remote Sensing
, vol.10
, Issue.2
, pp. 025006
-
-
Zhong, Y.1
Fei, F.2
Zhang, L.3
-
23
-
-
84992121956
-
Convolutional neural networks for large-scale remote-sensing image classification
-
E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez (2017). Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. In IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645-657.
-
(2017)
IEEE Transactions on Geoscience and Remote Sensing
, vol.55
, Issue.2
, pp. 645-657
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
24
-
-
84978805819
-
Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
-
Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi(2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232-6251.
-
(2016)
IEEE Transactions on Geoscience and Remote Sensing
, vol.54
, Issue.10
, pp. 6232-6251
-
-
Chen, Y.1
Jiang, H.2
Li, C.3
Jia, X.4
Ghamisi, P.5
-
25
-
-
84930423638
-
Spectralspatial classification of hyperspectral images using deep convolutional neural networks
-
J. Yue, W. Zhao, S. Mao, and H. Liu. Spectralspatial classification of hyperspectral images using deep convolutional neural networks. In Remote Sensing Letters, Vol. 6, no. 6, pp. 468-477, 2015.
-
(2015)
Remote Sensing Letters
, vol.6
, Issue.6
, pp. 468-477
-
-
Yue, J.1
Zhao, W.2
Mao, S.3
Liu, H.4
-
26
-
-
17444374947
-
Output-sensitive algorithms for computing nearestneighbor decision boundaries
-
D. Bremner, E. Demaine, J. Erickson, J. Iacono, S. Langerman, P. Morin, G. Toussaint, Output-sensitive algorithms for computing nearestneighbor decision boundaries, Discrete and Computational Geometry, 2005, pp. 593-604.
-
(2005)
Discrete and Computational Geometry
, pp. 593-604
-
-
Bremner, D.1
Demaine, E.2
Erickson, J.3
Iacono, J.4
Langerman, S.5
Morin, P.6
Toussaint, G.7
-
28
-
-
85045743749
-
Comparing image classification methods: K-nearest-neighbor and support-vector-machines
-
J. I. N. H. O. KIM, B. S. Kim, and S. Savarese (2012). Comparing image classification methods: K-nearest-neighbor and support-vector-machines. Ann Arbor, 1001, 48109-2122.
-
(2012)
Ann Arbor
, vol.1001
, pp. 2122-48109
-
-
Kim, J.I.N.H.O.1
Kim, B.S.2
Savarese, S.3
-
29
-
-
0003802343
-
-
Chapman & Hall, Boca Raton
-
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Chapman & Hall, Boca Raton, 1993.
-
(1993)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
30
-
-
65349153245
-
Classification: Basic concepts, decision trees, and model evaluation
-
P. N. Tan, M. Steinbach, and & V. Kumar (2006). Classification: basic concepts, decision trees, and model evaluation. Introduction to data mining, 1, 145-205.
-
(2006)
Introduction to Data Mining
, vol.1
, pp. 145-205
-
-
Tan, P.N.1
Steinbach, M.2
Kumar, V.3
-
31
-
-
84962569483
-
Deep supervised learning for hyperspectral data classification through convolutional neural networks
-
IEEE
-
K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In IEEE IGARSS. IEEE, 2015, pp. 4959-4962.
-
(2015)
IEEE IGARSS
, pp. 4959-4962
-
-
Makantasis, K.1
Karantzalos, K.2
Doulamis, A.3
Doulamis, N.4
-
32
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
33
-
-
84904687441
-
Sparse autoencoder
-
A. Ng. "Sparse autoencoder." CS294A Lecture notes 72 (2011): 1-19.
-
(2011)
CS294A Lecture Notes
, vol.72
, pp. 1-19
-
-
Ng, A.1
|