메뉴 건너뛰기




Volumn 4, Issue 1, 2016, Pages

Causal inference with large-scale assessments in education from a Bayesian perspective: a review and synthesis

Author keywords

Bayesian Model Average; Causal Inference; Propensity Score; Propensity Score Analysis

Indexed keywords


EID: 85041169696     PISSN: None     EISSN: 21960739     Source Type: Journal    
DOI: 10.1186/s40536-016-0022-6     Document Type: Review
Times cited : (14)

References (60)
  • 1
    • 78449311648 scopus 로고    scopus 로고
    • Bayesian propensity score estimators: Incorporating uncertainties in propensity scores into causal inference
    • An, W. H. (2010). Bayesian propensity score estimators: Incorporating uncertainties in propensity scores into causal inference. Sociological Methodology, 40, 151–189.
    • (2010) Sociological Methodology , vol.40 , pp. 151-189
    • An, W.H.1
  • 2
    • 84867176040 scopus 로고    scopus 로고
    • The case for objective Bayesian analysis
    • Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 3, 385–402.
    • (2006) Bayesian Analysis , vol.3 , pp. 385-402
    • Berger, J.1
  • 5
    • 84926421141 scopus 로고    scopus 로고
    • Covariate balance in a two-step bayesian propensity score approach for observational studies
    • Chen, J., & Kaplan, D. (2015). Covariate balance in a two-step bayesian propensity score approach for observational studies. Journal of Research on Educational Effectiveness, 8, 280–302.
    • (2015) Journal of Research on Educational Effectiveness , vol.8 , pp. 280-302
    • Chen, J.1    Kaplan, D.2
  • 6
    • 0014297593 scopus 로고
    • The effectiveness of adjustment by subclassification in removing bias in observational studies
    • Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics, 24, 295–313.
    • (1968) Biometrics , vol.24 , pp. 295-313
    • Cochran, W.G.1
  • 7
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs
    • Dehejia, R. H., & Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. Journal of the American Statistical Association, 94, 1053–1062.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1053-1062
    • Dehejia, R.H.1    Wahba, S.2
  • 11
    • 84886731305 scopus 로고    scopus 로고
    • Principles of multiple matrix booklet designs and parameter recovery in large-scale assessments
    • Gonzalez, E., & Rutkowski, L. (2010). Principles of multiple matrix booklet designs and parameter recovery in large-scale assessments. IEA-ETS Research Institute Monograph, 3, 125–156.
    • (2010) IEA-ETS Research Institute Monograph , vol.3 , pp. 125-156
    • Gonzalez, E.1    Rutkowski, L.2
  • 13
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the SAT
    • Hansen, B. B. (2004). Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association, 99, 609–618.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 609-618
    • Hansen, B.B.1
  • 15
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
    • Hirano, K., & Imbens, G. W. (2001a). Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization. Health Services and Outcomes Research Methodology, 2, 259–278.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.W.2
  • 16
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weigting: An application to data on right heart catheterization
    • Hirano, K., & Imbens, G. W. (2001b). Estimation of causal effects using propensity score weigting: An application to data on right heart catheterization. Health Services & Outcomes Research Methodology, 2, 259–278.
    • (2001) Health Services & Outcomes Research Methodology , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.W.2
  • 17
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. Econometrica, 71, 1169–1189.
    • (2003) Econometrica , vol.71 , pp. 1169-1189
    • Hirano, K.1    Imbens, G.W.2    Ridder, G.3
  • 19
    • 0030194062 scopus 로고    scopus 로고
    • A method for simultaneous variable selection and outlier identification in linear regression
    • Hoeting, J. A., Raftery, A. E., & Madigan, D. (1996). A method for simultaneous variable selection and outlier identification in linear regression. Computational Statistics & Data Analysis, 22, 251–270.
    • (1996) Computational Statistics & Data Analysis , vol.22 , pp. 251-270
    • Hoeting, J.A.1    Raftery, A.E.2    Madigan, D.3
  • 22
    • 35548979035 scopus 로고    scopus 로고
    • A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm
    • Hoshino, T. (2008). A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm. Computational Statistics & Data Analysis, 52, 1413–1429.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 1413-1429
    • Hoshino, T.1
  • 23
    • 78650085125 scopus 로고    scopus 로고
    • A general approach to causal mediation analysis
    • Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15, 309–334.
    • (2010) Psychological Methods , vol.15 , pp. 309-334
    • Imai, K.1    Keele, L.2    Tingley, D.3
  • 24
    • 80955160663 scopus 로고    scopus 로고
    • Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies
    • Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105, 765–789.
    • (2011) American Political Science Review , vol.105 , pp. 765-789
    • Imai, K.1    Keele, L.2    Tingley, D.3    Yamamoto, T.4
  • 25
    • 77957786869 scopus 로고    scopus 로고
    • Identification, inference and sensitivity analysis for causal mediation effects
    • Imai, K., Keele, L., & Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science, 25, 51–71.
    • (2010) Statistical Science , vol.25 , pp. 51-71
    • Imai, K.1    Keele, L.2    Yamamoto, T.3
  • 26
    • 85145866701 scopus 로고    scopus 로고
    • Causal inference in non-experimental educational policy research
    • Sykes G, Schneider B, Plank DN, (eds), Taylor and Francis, New York
    • Kaplan, D. (2009). Causal inference in non-experimental educational policy research. In G. Sykes, B. Schneider, & D. N. Plank (Eds.), Handbook on education policy research (pp. 139–153). New York: Taylor and Francis.
    • (2009) Handbook on education policy research , pp. 139-153
    • Kaplan, D.1
  • 28
    • 84861904320 scopus 로고    scopus 로고
    • A two-step Bayesian approach for propensity score analysis: Simulations and case study
    • Kaplan, D., & Chen, J. (2012). A two-step Bayesian approach for propensity score analysis: Simulations and case study. Psychometrika, 77, 581–609.
    • (2012) Psychometrika , vol.77 , pp. 581-609
    • Kaplan, D.1    Chen, J.2
  • 29
    • 84914118390 scopus 로고    scopus 로고
    • Bayesian model averaging for propensity score analysis
    • Kaplan, D., & Chen, J. (2014). Bayesian model averaging for propensity score analysis. Multivariate Behavioral Research, 49, 505–517.
    • (2014) Multivariate Behavioral Research , vol.49 , pp. 505-517
    • Kaplan, D.1    Chen, J.2
  • 30
    • 84955470010 scopus 로고    scopus 로고
    • On matrix sampling and imputation of context questionnaires with implications for the generation of plausible values in large-scale assessments
    • Kaplan, D., & Su, D. (2016). On matrix sampling and imputation of context questionnaires with implications for the generation of plausible values in large-scale assessments. Journal of Educational and Behavioral Statistics, 41, 57–80.
    • (2016) Journal of Educational and Behavioral Statistics , vol.41 , pp. 57-80
    • Kaplan, D.1    Su, D.2
  • 31
    • 84955368401 scopus 로고    scopus 로고
    • Multilevel propensity score methods for estimating causal effects: A latent class modeling strategy
    • Ark L, Bolt D, Wang W-C, Douglas J, Chow S-M, (eds), Springer, New York
    • Kim, J.-S., & Steiner, P. M. (2015). Multilevel propensity score methods for estimating causal effects: A latent class modeling strategy. In L. van der Ark, D. Bolt, W.-C. Wang, J. Douglas, & S.-M. Chow (Eds.), Quantitative psychology research: Proceedings of the 79th annual meeting of the psychometric society. New York: Springer.
    • (2015) Quantitative psychology research: Proceedings of the 79th annual meeting of the psychometric society
    • Kim, J.-S.1    Steiner, P.M.2
  • 33
    • 70350103524 scopus 로고
    • Model choice and specification analysis
    • Griliches Z, Intriligator M, (eds), North Holland, Amsterdam
    • Leamer, E. E. (1983). Model choice and specification analysis. In Z. Griliches & M. Intriligator (Eds.), Handbook of econometrics (Vol. 1). Amsterdam: North Holland.
    • (1983) Handbook of econometrics , vol.1
    • Leamer, E.E.1
  • 35
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainly in graphical models using Occam’s window
    • Madigan, D., & Raftery, A. E. (1994). Model selection and accounting for model uncertainly in graphical models using Occam’s window. Journal of the American Statistical Association, 89, 1535–1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 37
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9, 403–425.
    • (2004) Psychological Methods , vol.9 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 38
    • 61749103209 scopus 로고    scopus 로고
    • Bayesian propensity score analysis for observational data
    • McCandless, L. C., Gustafson, P., & Austin, P. C. (2009). Bayesian propensity score analysis for observational data. Statistics in Medicine, 28, 94–112.
    • (2009) Statistics in Medicine , vol.28 , pp. 94-112
    • McCandless, L.C.1    Gustafson, P.2    Austin, P.C.3
  • 44
    • 84931309555 scopus 로고    scopus 로고
    • Bayesian causal mediation analysis for group randomized designs with homogenous and heterogenous treatment effects: Simulation and case study
    • Park, S., & Kaplan, D. (2015). Bayesian causal mediation analysis for group randomized designs with homogenous and heterogenous treatment effects: Simulation and case study. Multivariate Behavioral Research, 50, 316–333.
    • (2015) Multivariate Behavioral Research , vol.50 , pp. 316-333
    • Park, S.1    Kaplan, D.2
  • 50
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 51
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688–701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 52
    • 0542388294 scopus 로고
    • The use of propensity scores in applied Bayesian inference Bayesian
    • Rubin, D. B. (1985). The use of propensity scores in applied Bayesian inference Bayesian. Statistics, 2, 463–472.
    • (1985) Statistics , vol.2 , pp. 463-472
    • Rubin, D.B.1
  • 54
    • 80053241964 scopus 로고    scopus 로고
    • The impact of missing background data on sub-population estimation
    • Rutkowski, L. (2011). The impact of missing background data on sub-population estimation. Journal of Educational Measurement, 48, 293–312.
    • (2011) Journal of Educational Measurement , vol.48 , pp. 293-312
    • Rutkowski, L.1
  • 55
    • 85143958533 scopus 로고    scopus 로고
    • Matching and propensity scores
    • Little T, (ed), Oxford University Press, Oxford
    • Steiner, P. M., & Cook, D. (2013). Matching and propensity scores. In T. Little (Ed.), Oxford handbook of quantitative methods. Oxford: Oxford University Press.
    • (2013) Oxford handbook of quantitative methods
    • Steiner, P.M.1    Cook, D.2
  • 56
    • 79951805837 scopus 로고    scopus 로고
    • A systematic review of propensity score methods in the social sciences
    • Thoemmes, F. J., & Kim, E. (2011). A systematic review of propensity score methods in the social sciences. Multivariate Behavioral Research, 46, 90–118.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 90-118
    • Thoemmes, F.J.1    Kim, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.