메뉴 건너뛰기




Volumn 49, Issue 6, 2014, Pages 505-517

Bayesian Model Averaging for Propensity Score Analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84914118390     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1080/00273171.2014.928492     Document Type: Article
Times cited : (25)

References (40)
  • 1
    • 78449311648 scopus 로고    scopus 로고
    • Bayesian propensity score estimators: Incorporating uncertainties in propensity scores into causal inference
    • An, W.H. (2010). Bayesian propensity score estimators: Incorporating uncertainties in propensity scores into causal inference. Sociological Methodology, 40, 151–189.
    • (2010) Sociological Methodology , vol.40 , pp. 151-189
    • An, W.H.1
  • 2
    • 0001135785 scopus 로고
    • Sampling and Bayes inference in scientific modeling and robustness (with discussion)
    • Box, G. E.P. (1980). Sampling and Bayes inference in scientific modeling and robustness (with discussion). Journal of the Royal Statistical Society, Series A, 143, 383–430.
    • (1980) Journal of the Royal Statistical Society, Series A , vol.143 , pp. 383-430
    • Box, G.E.P.1
  • 3
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier, G.W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78, 1–3.
    • (1950) Monthly Weather Review , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 4
    • 84926421141 scopus 로고    scopus 로고
    • Covariate balance in bayesian propensity score approaches forobservational studies
    • Chen, J., & Kaplan, D. (2014). Covariate balance in bayesian propensity score approaches forobservational studies. Journal for Research on Educational Effectiveness. doi: 10.1080/19345747.2014.911396
    • (2014) Journal for Research on Educational Effectiveness
    • Chen, J.1    Kaplan, D.2
  • 7
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs
    • Dehejia, R.H., & Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. Journal of the American Statistical Association, 94, 1053–1062.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1053-1062
    • Dehejia, R.H.1    Wahba, S.2
  • 9
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the SAT
    • Hansen, B.B. (2004). Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association, 99, 609618.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 609-618
    • Hansen, B.B.1
  • 10
    • 77956807205 scopus 로고    scopus 로고
    • Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research
    • Harder, V.S., Stuart, E.A., & Anthony, J.C. (2010). Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. Psychological Methods, 15, 234249.
    • (2010) Psychological Methods , vol.15 , pp. 234-249
    • Harder, V.S.1    Stuart, E.A.2    Anthony, J.C.3
  • 11
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
    • Hirano, K., & Imbens, G.W. (2001). Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization. Health Services and Outcomes Research Methodology, 2, 259–278.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.W.2
  • 13
    • 35548979035 scopus 로고    scopus 로고
    • A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm
    • Hoshino, T. (2008). A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm. Computational Statistics & Data Analysis, 52, 14131429.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 1413-1429
    • Hoshino, T.1
  • 14
    • 84861904320 scopus 로고    scopus 로고
    • A two-step Bayesian approach for propensity score analysis: Simulations and case study
    • Kaplan, D., & Chen, J. (2012). A two-step Bayesian approach for propensity score analysis: Simulations and case study. Psychometrika, 77, 581–609.
    • (2012) Psychometrika , vol.77 , pp. 581-609
    • Kaplan, D.1    Chen, J.2
  • 15
    • 33747474436 scopus 로고    scopus 로고
    • Calibrated Bayes: A Bayes/frequentist roadmap
    • Little, R.J. (2006). Calibrated Bayes: A Bayes/frequentist roadmap. The American Statistician, 60, 213–223.
    • (2006) The American Statistician , vol.60 , pp. 213-223
    • Little, R.J.1
  • 16
    • 83055193550 scopus 로고    scopus 로고
    • Calibrated Bayes, for statistics in general, and missing data in particular
    • Little, R.J. (2011). Calibrated Bayes, for statistics in general, and missing data in particular. Statistical Science, 26, 162–174.
    • (2011) Statistical Science , vol.26 , pp. 162-174
    • Little, R.J.1
  • 17
    • 84890077158 scopus 로고    scopus 로고
    • In praise of simplicity not mathematistry! Ten simple powerful ideas for the statistical scientist
    • Little, R.J. (2013). In praise of simplicity not mathematistry! Ten simple powerful ideas for the statistical scientist. Journal of the American Statistical Association, 108, 359–369.
    • (2013) Journal of the American Statistical Association , vol.108 , pp. 359-369
    • Little, R.J.1
  • 18
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford, J., & Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Statistics in Medicine, 23, 2937–2960.
    • (2004) Statistics in Medicine , vol.23 , pp. 2937-2960
    • Lunceford, J.1    Davidian, M.2
  • 20
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainly in graphical models using Occam’s window
    • Madigan, D., & Raftery, A.E. (1994). Model selection and accounting for model uncertainly in graphical models using Occam’s window. Journal of the American Statistical Association, 89, 1535–1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 22
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey, D.F., Ridgeway, G., & Morral, A.R. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9, 403425.
    • (2004) Psychological Methods , vol.9 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 25
    • 3142767135 scopus 로고    scopus 로고
    • Early childhood longitudinal study: Kindergarten class of 1998-99: Base year public-use data files user’s manual
    • Washington, DC: U.S. Department of Education
    • (2001). Early childhood longitudinal study: Kindergarten class of 1998-99: Base year public-use data files user’s manual (Tech. Rep. No. NCES 2001-029). Washington, DC: U.S. Department of Education.
    • (2001) (Tech. Rep. No. NCES 2001-029)
  • 29
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P.R., & Rubin, D.B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 30
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum, P.R., & Rubin, D.B. (1984). Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association, 79, 516–524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 31
    • 85144841000 scopus 로고
    • Using multivariate matched sampling and regression adjustment to control bias in observational studies
    • Rubin, D.B. (1979). Using multivariate matched sampling and regression adjustment to control bias in observational studies. Journal of the American Statistical Association, 74, 318–328.
    • (1979) Journal of the American Statistical Association , vol.74 , pp. 318-328
    • Rubin, D.B.1
  • 32
    • 0000439370 scopus 로고
    • Bayesianly justifiable and relevant frequency calculations for the applied statistician
    • Rubin, D.B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 1151–1172.
    • (1984) Annals of Statistics , vol.12 , pp. 1151-1172
    • Rubin, D.B.1
  • 33
    • 0542388294 scopus 로고
    • The use of propensity scores in applied Bayesian inference
    • Rubin, D.B. (1985). The use of propensity scores in applied Bayesian inference. Bayesian Statistics, 2, 463472.
    • (1985) Bayesian Statistics , vol.2 , pp. 463-472
    • Rubin, D.B.1
  • 34
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • Rubin, D.B. (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2, 169–188.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 169-188
    • Rubin, D.B.1
  • 35
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from non-randomized studies: A practical guide and simulated example
    • Schafer, J.L., & Kang, J. (2008). Average causal effects from non-randomized studies: A practical guide and simulated example. Psychological Methods, 13, 279–313.
    • (2008) Psychological Methods , vol.13 , pp. 279-313
    • Schafer, J.L.1    Kang, J.2
  • 36
    • 79955062603 scopus 로고    scopus 로고
    • On the importance of reliable covariate measurement in selection bias adjustments using propensity scores
    • Steiner, P.M., Cook, T.D., & Shadish, W.R. (2011). On the importance of reliable covariate measurement in selection bias adjustments using propensity scores. Journal of Educational and Behavioral Statistics, 36(2), 213–236.
    • (2011) Journal of Educational and Behavioral Statistics , vol.36 , Issue.2 , pp. 213-236
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3
  • 37
    • 77956791074 scopus 로고    scopus 로고
    • The importance of covariate selection in controlling for selection bias in observational studies
    • Steiner, P.M., Cook, T.D., Shadish, W.R., & Clark, M.H. (2010). The importance of covariate selection in controlling for selection bias in observational studies. Psychological Methods, 15, 250267.
    • (2010) Psychological Methods , vol.15 , pp. 250-267
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3    Clark, M.H.4
  • 39
    • 19544362938 scopus 로고    scopus 로고
    • Bayesian model averaging: Development of an improved multi-class, gene selection and classification tool for microarray data
    • Yeung, K.Y., Bumgarner, R.E., & Raftery, A.E. (2005). Bayesian model averaging: Development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics, 21, 2394–2402.
    • (2005) Bioinformatics , vol.21 , pp. 2394-2402
    • Yeung, K.Y.1    Bumgarner, R.E.2    Raftery, A.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.