메뉴 건너뛰기




Volumn 77, Issue 3, 2012, Pages 581-609

Erratum to: A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study (Psychometrika 2012, 10.1007/s11336-012-9262-8);A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study

Author keywords

Bayesian inference; Propensity score analysis

Indexed keywords


EID: 84861904320     PISSN: 00333123     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11336-012-9271-7     Document Type: Erratum
Times cited : (53)

References (52)
  • 1
    • 33645024678 scopus 로고    scopus 로고
    • Large sample properties of matching estimators for average treatment effects
    • Abadie, A., & Imbens, G. (2006). Large sample properties of matching estimators for average treatment effects. Econometrica, 74, 235-267.
    • (2006) Econometrica , vol.74 , pp. 235-267
    • Abadie, A.1    Imbens, G.2
  • 2
    • 56349115008 scopus 로고    scopus 로고
    • On the failure of the bootstrap for matching estimators
    • Abadie, A., & Imbens, G. W. (2008). On the failure of the bootstrap for matching estimators. Econometrica, 76, 1537-1558.
    • (2008) Econometrica , vol.76 , pp. 1537-1558
    • Abadie, A.1    Imbens, G.W.2
  • 4
    • 77953523653 scopus 로고    scopus 로고
    • Assessing joint distributions with isoprobability countours
    • Abbas, A. E., Budescu, D. V., & Gu, Y. (2010). Assessing joint distributions with isoprobability countours. Management Science, 56, 997-1011.
    • (2010) Management Science , vol.56 , pp. 997-1011
    • Abbas, A.E.1    Budescu, D.V.2    Gu, Y.3
  • 5
    • 75649104560 scopus 로고    scopus 로고
    • A comparison of two probability encoding methods: Fixed probability vs. fixed variable values
    • Abbas, A. E., Budescu, D. V., Yu, H. T., & Haggerty, R. (2008). A comparison of two probability encoding methods: fixed probability vs. fixed variable values. Decision Analysis, 5, 190-202.
    • (2008) Decision Analysis , vol.5 , pp. 190-202
    • Abbas, A.E.1    Budescu, D.V.2    Yu, H.T.3    Haggerty, R.4
  • 6
    • 78449311648 scopus 로고    scopus 로고
    • Bayesian propensity score estimators: Incorporating uncertainties in propensity scores into causal inference
    • An, W. (2010). Bayesian propensity score estimators: incorporating uncertainties in propensity scores into causal inference. Sociological Methodology, 40, 151-189.
    • (2010) Sociological Methodology , vol.40 , pp. 151-189
    • An, W.1
  • 7
    • 33745466638 scopus 로고    scopus 로고
    • A comparison of propensity score methods: A case-study estimating the effectiveness of post-AMI statin use
    • Austin, P. C., & Mamdani, M. M. (2006). A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine, 25, 2084-2106.
    • (2006) Statistics in Medicine , vol.25 , pp. 2084-2106
    • Austin, P.C.1    Mamdani, M.M.2
  • 8
    • 0038067833 scopus 로고    scopus 로고
    • Does 401(k) eligibility increase saving? Evidence from propensity score subclassification
    • Benjamin, D. J. (2003). Does 401(k) eligibility increase saving? Evidence from propensity score subclassification. Journal of Public Economics, 87, 1259-1290.
    • (2003) Journal of Public Economics , vol.87 , pp. 1259-1290
    • Benjamin, D.J.1
  • 9
    • 0014297593 scopus 로고
    • The effectiveness of adjustment by subclassification in removing bias in observational studies
    • Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics, 24, 295-313.
    • (1968) Biometrics , vol.24 , pp. 295-313
    • Cochran, W.G.1
  • 14
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the SAT
    • Hansen, B. B. (2004). Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association, 99, 609-618.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 609-618
    • Hansen, B.B.1
  • 16
    • 33644867915 scopus 로고    scopus 로고
    • The scientific model of causality
    • R. M. Stolzenberg (Ed.), Boston: Blackwell Publishing
    • Heckman, J. J. (2005). The scientific model of causality. In R. M. Stolzenberg (Ed.), Sociological methodology (Vol. 35, pp. 1-97). Boston: Blackwell Publishing.
    • (2005) Sociological Methodology , vol.35 , pp. 1-97
    • Heckman, J.J.1
  • 17
    • 0035761721 scopus 로고    scopus 로고
    • Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization
    • Hirano, K., & Imbens, G. W. (2001). Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Services and Outcomes Research Methodology, 2, 259-278.
    • (2001) Health Services and Outcomes Research Methodology , vol.2 , pp. 259-278
    • Hirano, K.1    Imbens, G.W.2
  • 18
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. Econometrica, 71, 1169-1189.
    • (2003) Econometrica , vol.71 , pp. 1169-1189
    • Hirano, K.1    Imbens, G.W.2    Ridder, G.3
  • 21
    • 35548979035 scopus 로고    scopus 로고
    • A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm
    • Hoshino, T. (2008). A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm. Computational Statistics & Data Analysis, 52, 1413-1429.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 1413-1429
    • Hoshino, T.1
  • 22
    • 4944262857 scopus 로고    scopus 로고
    • An analysis of survey data on smoking using propensity scores
    • Larsen, M. D. (1999). An analysis of survey data on smoking using propensity scores. Sankya. The Indian Journal of Statistics, 61, 91-105.
    • (1999) Sankya. The Indian Journal of Statistics , vol.61 , pp. 91-105
    • Larsen, M.D.1
  • 23
    • 0036420919 scopus 로고    scopus 로고
    • Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods
    • Lechner, M. (2002). Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods. Journal of the Royal Statistical Society. Series A. Statistics in Society, 165, 59-82.
    • (2002) Journal of the Royal Statistical Society. Series A. Statistics in Society , vol.165 , pp. 59-82
    • Lechner, M.1
  • 24
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford, J. K., & Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine, 23, 2937-2960.
    • (2004) Statistics in Medicine , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 26
  • 31
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team, (Computer software manual). Vienna, Austria. Available from (ISBN 3-900051-07-0)
    • R Development Core Team (2011). R: a language and environment for statistical computing (Computer software manual). Vienna, Austria. Available from http://www. R-project. org (ISBN 3-900051-07-0).
    • (2011) R: A language and environment for statistical computing
  • 36
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 37
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using sub-classification on the propensity score
    • Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using sub-classification on the propensity score. Journal of the American Statistical Association, 79, 516-524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 38
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate a propensity score
    • Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate a propensity score. American Statistician, 39, 33-38.
    • (1985) American Statistician , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 39
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 40
    • 0542388294 scopus 로고
    • The use of propensity scores in applied Bayesian inference
    • Rubin, D. B. (1985). The use of propensity scores in applied Bayesian inference. Bayesian Statistics, 2, 463-472.
    • (1985) Bayesian Statistics , vol.2 , pp. 463-472
    • Rubin, D.B.1
  • 42
    • 0000849981 scopus 로고
    • Affinely invariant matching methods with ellipsoidal distributions
    • Rubin, D. B., & Thomas, N. (1992a). Affinely invariant matching methods with ellipsoidal distributions. Annals of Statistics, 20, 1079-1093.
    • (1992) Annals of Statistics , vol.20 , pp. 1079-1093
    • Rubin, D.B.1    Thomas, N.2
  • 43
    • 0000458803 scopus 로고
    • Characterizing the effect of matching using linear propensity score methods with normal distributions
    • Rubin, D. B., & Thomas, N. (1992b). Characterizing the effect of matching using linear propensity score methods with normal distributions. Biometrika, 79, 797-809.
    • (1992) Biometrika , vol.79 , pp. 797-809
    • Rubin, D.B.1    Thomas, N.2
  • 44
    • 0029959044 scopus 로고    scopus 로고
    • Matching using estimated propensity scores
    • Rubin, D. B., & Thomas, N. (1996). Matching using estimated propensity scores. Biometrics, 52, 249-264.
    • (1996) Biometrics , vol.52 , pp. 249-264
    • Rubin, D.B.1    Thomas, N.2
  • 46
    • 84875460479 scopus 로고    scopus 로고
    • Matching and propensity scores
    • (in press). In T. Little (Ed.), Oxford: Oxford University Press
    • Steiner, P. M., & Cook, D. (in press). Matching and propensity scores. In T. Little (Ed.), Oxford handbook of quantitative methods. Oxford: Oxford University Press.
    • Oxford handbook of quantitative methods
    • Steiner, P.M.1    Cook, D.2
  • 47
    • 79955062603 scopus 로고    scopus 로고
    • On the importance of reliable covariate measurement in selection bias adjustments using propensity scores
    • Steiner, P. M., Cook, T. D., & Shadish, W. R. (2011). On the importance of reliable covariate measurement in selection bias adjustments using propensity scores. Journal of Educational and Behavioral Statistics, 36, 213-236.
    • (2011) Journal of Educational and Behavioral Statistics , vol.36 , pp. 213-236
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3
  • 48
    • 77956791074 scopus 로고    scopus 로고
    • The importance of covariate selection in controlling for selection bias in observational studies
    • Steiner, P. M., Cook, T. D., Shadish, W. R., & Clark, M. H. (2010). The importance of covariate selection in controlling for selection bias in observational studies. Psychological Methods, 15, 250-267.
    • (2010) Psychological Methods , vol.15 , pp. 250-267
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3    Clark, M.H.4
  • 49
    • 79951805837 scopus 로고    scopus 로고
    • A systematic review of propensity score methods in the social sciences
    • Thoemmes, F. J., & Kim, E. S. (2011). A systematic review of propensity score methods in the social sciences. Multivariate Behavioral Research, 46, 90-118.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 90-118
    • Thoemmes, F.J.1    Kim, E.S.2
  • 50
    • 79953732420 scopus 로고    scopus 로고
    • MICE: Multivariate imputation by chained equations in R
    • Available from
    • van Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1-67. Available from http://www. jstatsoft. org/v45/i03/.
    • (2011) Journal of Statistical Software , vol.45 , Issue.3 , pp. 1-67
    • van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 52
    • 15344348967 scopus 로고    scopus 로고
    • Using propensity score subclassification for multiple treatment doses to evaluate a national anti-drug media campaign
    • Zanutto, E. L., Lu, B., & Hornik, R. (2005). Using propensity score subclassification for multiple treatment doses to evaluate a national anti-drug media campaign. Journal of Educational and Behavioral Statistics, 30, 59-73.
    • (2005) Journal of Educational and Behavioral Statistics , vol.30 , pp. 59-73
    • Zanutto, E.L.1    Lu, B.2    Hornik, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.