-
1
-
-
33749045048
-
Implementing matching estimators for average treatment effects in Stata
-
Abadie, A., Drukker, D., Herr, J. L., and Imbens, G. W. (2004). Implementing matching estimators for average treatment effects in Stata. The Stata Journal, 4, 290—311.
-
(2004)
The Stata Journal
, vol.290-311
, pp. 4
-
-
Abadie, A.1
Drukker, D.2
Herr, J.L.3
Imbens, G.W.4
-
3
-
-
85050847411
-
The computerized construction of a matched sample
-
Althauser, R., and Rubin, D. B. (1970). The computerized construction of a matched sample. American Journal of Sociology, 76, 325-346.
-
(1970)
American Journal of Sociology
, vol.76
, pp. 325-346
-
-
Althauser, R.1
Rubin, D.B.2
-
4
-
-
33644851650
-
Doubly robust estimation in missing data and causal inference models
-
Bang, H., and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics, 61, 962-972.
-
(2005)
Biometrics
, vol.61
, pp. 962-972
-
-
Bang, H.1
Robins, J.M.2
-
5
-
-
85129712964
-
Estimation of average treatment effects based on propensity scores
-
Becker, S. O., Ichino, A. (2002). Estimation of average treatment effects based on propensity scores. The Stata Journal, 2, 358-377.
-
(2002)
The Stata Journal
, vol.2
, pp. 358-377
-
-
Becker, S.O.1
Ichino, A.2
-
6
-
-
31944452324
-
An introduction to ensemble methods for data analysis
-
Berk, R. A. (2006). An introduction to ensemble methods for data analysis. Sociological Methods and Research, 34, 263-295.
-
(2006)
Sociological Methods and Research
, vol.34
, pp. 263-295
-
-
Berk, R.A.1
-
8
-
-
0013208476
-
-
Washington, DC: Manpower Demonstration Research Corporation
-
Bloom, H. S., Michalopoulos, C., Hill, C. J., and Lei, Y. (2002). Can Non experimental Comparison Group Methods Match the Findings from a Random Assignment Evaluation of Mandatory Welfare-to-Work Programs? Washington, DC: Manpower Demonstration Research Corporation.
-
(2002)
Can Non Experimental Comparison Group Methods Match the Findings from a Random Assignment Evaluation of Mandatory Welfare-To-Work Programs?
-
-
Bloom, H.S.1
Michalopoulos, C.2
Hill, C.J.3
Lei, Y.4
-
9
-
-
0014297593
-
The effectiveness of adjustment by subclassification in removing bias in observational studies
-
Cochran, W. G. (1968): The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics, 24, 295-313.
-
(1968)
Biometrics
, vol.24
, pp. 295-313
-
-
Cochran, W.G.1
-
10
-
-
0000057576
-
Controlling bias in observational studies: A review
-
Cochran, W. G., and Rubin, D. B. (1973). Controlling bias in observational studies: A review. Sankhya: The Indian Journal of Statistics, Series A, 35, 417-446.
-
(1973)
Sankhya: The Indian Journal of Statistics, Series A
, vol.35
, pp. 417-446
-
-
Cochran, W.G.1
Rubin, D.B.2
-
11
-
-
56749125132
-
Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons
-
Cook, T. D., Shadish, W. R., and Wong, V. C. (2008). Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons. Journal of Policy Analysis and Management, 27(4), 724-750.
-
(2008)
Journal of Policy Analysis and Management
, vol.27
, Issue.4
, pp. 724-750
-
-
Cook, T.D.1
Shadish, W.R.2
Wong, V.C.3
-
12
-
-
77949623528
-
Case matching and the reduction of selection bias in quasi-experiments: The relative importance of the pretest as a covariate, unreliable measurement and mode of data analysis
-
Cook, T. D., and Steiner, P. M. (2010). Case matching and the reduction of selection bias in quasi-experiments: The relative importance of the pretest as a covariate, unreliable measurement and mode of data analysis. Psychological Methods, 15(1), 56-68.
-
(2010)
Psychological Methods
, vol.15
, Issue.1
, pp. 56-68
-
-
Cook, T.D.1
Steiner, P.M.2
-
13
-
-
77951656304
-
Assessing how bias reduction is influenced by covariate choice, unreliability and data analytic mode: An analysis of different kinds of within-study comparisons in different substantive domains
-
Cook, T. D., Steiner, P. M., and Pohl, S. (2009). Assessing how bias reduction is influenced by covariate choice, unreliability and data analytic mode: An analysis of different kinds of within-study comparisons in different substantive domains. Multivariate Behavioral Research, 44, 828-847.
-
(2009)
Multivariate Behavioral Research
, vol.44
, pp. 828-847
-
-
Cook, T.D.1
Steiner, P.M.2
Pohl, S.3
-
15
-
-
0442309558
-
Causal effects in non-experimental studies: Re-evaluating the evaluation oftraining programs
-
Dehejia, R., and Wahba, S. (1999). Causal effects in non-experimental studies: Re-evaluating the evaluation oftraining programs. Journal of the American Statistical Association, 94, 1053-1062.
-
(1999)
Journal of the American Statistical Association
, vol.94
, pp. 1053-1062
-
-
Dehejia, R.1
Wahba, S.2
-
16
-
-
0036102924
-
Propensity score-matching methods for nonexperimental causal studies
-
Dehejia, R., and Wahba, S. (2002). Propensity score-matching methods for nonexperimental causal studies. The Review of Economics and Statistics, 84(1): 151-161.
-
(2002)
The Review of Economics and Statistics
, vol.84
, Issue.1
, pp. 151-161
-
-
Dehejia, R.1
Wahba, S.2
-
18
-
-
0041416027
-
Non experimental versus experimental estimates of earnings impacts
-
Glazerman, S., Levy, D. M., and Myers, D. (2003). Non experimental versus experimental estimates of earnings impacts. The Annals of the American Academy, 589, 63-93.
-
(2003)
The Annals of the American Academy
, vol.589
, pp. 63-93
-
-
Glazerman, S.1
Levy, D.M.2
Myers, D.3
-
19
-
-
0003138938
-
Comparison of multivariate matching methods: Structures, distances, and algorithms
-
Gu, X., and Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2, 405-420.
-
(1993)
Journal of Computational and Graphical Statistics
, vol.2
, pp. 405-420
-
-
Gu, X.1
Rosenbaum, P.R.2
-
21
-
-
4944238507
-
Full matching in an observational study of coaching for the SAT
-
Hansen, B. B. (2004). Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association, 99, 609-618.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 609-618
-
-
Hansen, B.B.1
-
24
-
-
0001065872
-
Shadow prices, market wages, and labor supply
-
Heckman, J. J. (1974). Shadow prices, market wages, and labor supply. Econometrica, 42, 679-694.
-
(1974)
Econometrica
, vol.42
, pp. 679-694
-
-
Heckman, J.J.1
-
25
-
-
0000125534
-
Sample selection bias as a specification error
-
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometriaca, 47, 153-161.
-
(1979)
Econometriaca
, vol.47
, pp. 153-161
-
-
Heckman, J.J.1
-
26
-
-
33644867915
-
The scientific model of causality
-
Heckman, J. J. (2005). The scientific model of causality. Sociological Methodology, 35(1), 1-98.
-
(2005)
Sociological Methodology
, vol.35
, Issue.1
, pp. 1-98
-
-
Heckman, J.J.1
-
27
-
-
0001622038
-
Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme
-
Heckman, J. J., Ichimura, H., and Todd, P. E. (1997). Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. Review ofEconomic Studies, 64, 605-654.
-
(1997)
Review Ofeconomic Studies
, vol.64
, pp. 605-654
-
-
Heckman, J.J.1
Ichimura, H.2
Todd, P.E.3
-
28
-
-
0000423207
-
Matching as an econometric evaluation estimator
-
Heckman, J. J., Ichimura, H., and Todd, P. E. (1998). Matching as an econometric evaluation estimator. Review of Economic Studies, 65, 261-294.
-
(1998)
Review of Economic Studies
, vol.65
, pp. 261-294
-
-
Heckman, J.J.1
Ichimura, H.2
Todd, P.E.3
-
29
-
-
34249885738
-
Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
-
Ho, D. E., Imai, K., King, G., and Stuart, E. A. (2007). Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis, 15, 199-236.
-
(2007)
Political Analysis
, vol.15
, pp. 199-236
-
-
Ho, D.E.1
Imai, K.2
King, G.3
Stuart, E.A.4
-
30
-
-
84924464889
-
Match It: Nonparametric preprocessing for parametric causal inference
-
Ho, D. E., Imai, K., King, G., and Stuart, E. A. (in press). Match It: Nonparametric preprocessing for parametric causal inference. Journal of Statistical Software.
-
Journal of Statistical Software
-
-
Ho, D.E.1
Imai, K.2
King, G.3
Stuart, E.A.4
-
32
-
-
85143955224
-
Marginal mean weighting through stratification: Adjustment for selection bias in multi-level data
-
Hong, G. (2009). Marginal mean weighting through stratification: Adjustment for selection bias in multi-level data. Unpublished Manuscript.
-
(2009)
Unpublished Manuscript
-
-
Hong, G.1
-
33
-
-
85143950263
-
Evaluating kindergarten retention policy: A case study of causal inference for multilevel observational data
-
Hong, G., and Raudenbush, S. W. (2006). Evaluating kindergarten retention policy: A case study of causal inference for multilevel observational data. Journal of the American Statistical Association, 101, 901—910.
-
(2006)
Journal of the American Statistical Association
, vol.901-910
, pp. 101
-
-
Hong, G.1
Raudenbush, S.W.2
-
34
-
-
51849121101
-
Causal inference for time-varying instructional treatments
-
Hong, G., and Raudenbush, S. W. (2008). Causal inference for time-varying instructional treatments. Journal of Educational and Behavioral Statistics, 33(3), 333—362.
-
(2008)
Journal of Educational and Behavioral Statistics
, vol.33
, Issue.3
, pp. 333-362
-
-
Hong, G.1
Raudenbush, S.W.2
-
36
-
-
4944223958
-
Causal inference with general treatment regimes: Generalizing the propensitys core
-
Imai, K. and van Dyk, D.A. (2004). Causal inference with general treatment regimes: Generalizing the propensitys core. Journal of the American Statistical Association, 99, 854—866.
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 854-866
-
-
Imai, K.1
Van Dyk, D.A.2
-
37
-
-
0000724291
-
The role of the propensity score in estimating dose-response functions
-
Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika, 87, 706—710.
-
(2000)
Biometrika
, vol.87
, pp. 706-710
-
-
Imbens, G.W.1
-
38
-
-
1842429563
-
Nonparametric estimation of average treatment effects under exogeneity: A review
-
Imbens, G. W (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and Statistics, 86(1), 4—29.
-
(2004)
Review of Economics and Statistics
, vol.86
, Issue.1
, pp. 4-29
-
-
Imbens, G.W.1
-
40
-
-
46249131752
-
Demystifying double robustness: A comparison of alternative strategies for estimating population means from incomplete data
-
Kang, J., and Schafer, J. L. (2007). Demystifying double robustness: a comparison of alternative strategies for estimating population means from incomplete data. Statistical Science, 26, 523-539.
-
(2007)
Statistical Science
, vol.26
, pp. 523-539
-
-
Kang, J.1
Schafer, J.L.2
-
41
-
-
0033261299
-
An extension of the propensity score adjustment method for the analysis of group differences in MIMIC models
-
Kaplan, D. (1999). An extension of the propensity score adjustment method for the analysis of group differences in MIMIC models. Multivariate Behavioral Research, 34(4), 467-492.
-
(1999)
Multivariate Behavioral Research
, vol.34
, Issue.4
, pp. 467-492
-
-
Kaplan, D.1
-
42
-
-
77951474788
-
Causal inference in non-experimental educational policy research
-
Washington, DC: AERA
-
Kaplan, D. (2009). Causal inference in non-experimental educational policy research. In D. N. Plank, W. E. Schmidt, and G. Sykes (Eds.), AERA Handbook on Education Policy Research. Washington, DC: AERA.
-
(2009)
AERA Handbook on Education Policy Research
-
-
Kaplan, D.1
Plank, D.N.2
Schmidt, W.E.3
Sykes, G.4
-
43
-
-
67449122300
-
Match cases to controls using variable optimal matching
-
http://mayoresearch.mayo.edu/mayo/resea-rch/biostat/upload/gmatch.sas
-
Kosanke, J., and Bergstralh, E. (2004). Match cases to controls using variable optimal matching: URL http://mayo-research.mayo.edu/mayo/research/biostat/upload/vmatch.sas and Match 1 or more controls to cases using the GREEDY algorithm: URL http://mayoresearch.mayo.edu/mayo/resea-rch/biostat/upload/gmatch.sas.
-
(2004)
Match 1 Or More Controls to Cases Using the GREEDY Algorithm
-
-
Kosanke, J.1
Bergstralh, E.2
-
44
-
-
85143954694
-
rbounds: Perform Rosenbaum bounds sensitivity tests for matched data
-
Keele, L. J. (2009). rbounds: Perform Rosenbaum bounds sensitivity tests for matched data. R package. http://CRAN.R-project.org/package=rbounds.
-
(2009)
R Package
-
-
Keele, L.J.1
-
45
-
-
85143943941
-
Small samples and propensity score methods
-
Kolar, A., and Vehovar, V. (2012). Small samples and propensity score methods. Working Paper.
-
(2012)
Working Paper
-
-
Kolar, A.1
Vehovar, V.2
-
47
-
-
74749097452
-
Improving propensity score weighting using machine learning
-
Lee, B., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine, 29, 337-346.
-
(2010)
Statistics in Medicine
, vol.29
, pp. 337-346
-
-
Lee, B.1
Lessler, J.2
Stuart, E.A.3
-
48
-
-
4043152946
-
PSMATCH2. Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing
-
Leuven, E., and Sianesi, B. (2003). PSMATCH2. Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. Statistical Software Components S432001, Boston College Department of Economics.
-
(2003)
Statistical Software Components S432001, Boston College Department of Economics
-
-
Leuven, E.1
Sianesi, B.2
-
49
-
-
8644254410
-
Robust likelihood-based analysis of multivariate data with missing values
-
Little, R. J. A., and An, H. (2004). Robust likelihood-based analysis of multivariate data with missing values. Statistica Sinica, 14, 949-968.
-
(2004)
Statistica Sinica
, vol.14
, pp. 949-968
-
-
Little, R.J.A.1
An, H.2
-
50
-
-
28444464482
-
Propensity scores: An introduction and experimental test
-
Luellen, J. K, Shadish, W. R., and Clark, M.H. (2005). Propensity scores: An introduction and experimental test. Evaluation Review, 29, 530-558.
-
(2005)
Evaluation Review
, vol.29
, pp. 530-558
-
-
Luellen, J.K.1
Shadish, W.R.2
Clark, M.H.3
-
51
-
-
4444230264
-
Stratification and weighting via propensity score in estimation of causal treatment effects: A comparative study
-
Lunceford, J. K., and Davidian, M. (2004). Stratification and weighting via propensity score in estimation of causal treatment effects: A comparative study. Statistical Medicine, 23, 2937-2960.
-
(2004)
Statistical Medicine
, vol.23
, pp. 2937-2960
-
-
Lunceford, J.K.1
Davidian, M.2
-
53
-
-
1542469617
-
Marginal mean models for dynamic regimes
-
Murphy, S. A., van der Laan, M. J., Robins, J. M., and CPPRG (2001). Marginal mean models for dynamic regimes. Journal ofthe American Statistical Association, 96, 1410-1423.
-
(2001)
Journal Ofthe American Statistical Association
, vol.96
, pp. 1410-1423
-
-
Murphy, S.A.1
Van der Laan, M.J.2
Robins, J.M.3
-
54
-
-
10844272276
-
Propensity score estimation with boosted regression for evaluating causal effects in observational studies
-
McCaffrey, D. F., Ridgeway, G., and Morral, A. R. (2009). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9, 403-425.
-
(2009)
Psychological Methods
, vol.9
, pp. 403-425
-
-
McCaffrey, D.F.1
Ridgeway, G.2
Morral, A.R.3
-
56
-
-
85143956216
-
-
Cary, NC: SAS Institute Inc
-
Parsons, L. S. (2001). Reducing bias in a propensity score matched-pair sample using greedy matching techniques. SAS Institute Inc., Proceedings of the Twenty-Sixth Annual SAS ®Users Group International Conference, Paper 21426. Cary, NC: SAS Institute Inc., URL http://www2.sas.com/proceedings/sugi26/p214-26.pdf.
-
(2001)
Reducing Bias in a Propensity Score Matched-Pair Sample Using Greedy Matching Techniques. SAS Institute Inc., Proceedings of the Twenty-Sixth Annual SAS ®Users Group International Conference, Paper
, pp. 21426
-
-
Parsons, L.S.1
-
58
-
-
72749113758
-
Unbiased causal inference from an observational study: Results of a within-study comparison
-
Pohl, S., Steiner, P. M., Eisermann, J., Soellner, R., and Cook, T. D. (2009). Unbiased causal inference from an observational study: Results of a within-study comparison. Educational Evaluation and Policy Analysis, 31(4), 463-479.
-
(2009)
Educational Evaluation and Policy Analysis
, vol.31
, Issue.4
, pp. 463-479
-
-
Pohl, S.1
Steiner, P.M.2
Eisermann, J.3
Soellner, R.4
Cook, T.D.5
-
61
-
-
0001415308
-
Associations, causation, and marginal structural models
-
Robins, J. M. (1999). Associations, causation, and marginal structural models. Synthese, 101, 151-179.
-
(1999)
Synthese
, vol.101
, pp. 151-179
-
-
Robins, J.M.1
-
62
-
-
21844487694
-
Semi parametric efficiency in multivariate regression models with missing data
-
Robins, J. M., and Rotnitzky, A. (1995). Semi parametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association, 90, 122-129.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 122-129
-
-
Robins, J.M.1
Rotnitzky, A.2
-
63
-
-
0005976738
-
Comment on ‘Inference for semiparametric models: Some questions and answers’ by Bickel and Kwon
-
Robins, J. M., and Rotnitzky, A. (2001). Comment on ‘Inference for semiparametric models: Some questions and answers’ by Bickel and Kwon. Statistica Sinica, 11, 920-936.
-
(2001)
Statistica Sinica
, vol.11
, pp. 920-936
-
-
Robins, J.M.1
Rotnitzky, A.2
-
64
-
-
84950421496
-
Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
-
Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90, 106-121.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 106-121
-
-
Robins, J.M.1
Rotnitzky, A.2
Zhao, L.P.3
-
65
-
-
0242337835
-
From association to causation in observational studies: The role of tests of strongly ignorable treatment assignment
-
Rosenbaum, P. R. (1984). From association to causation in observational studies: The role of tests of strongly ignorable treatment assignment. Journal ofthe American Statistical Association, 79, 41-48.
-
(1984)
Journal Ofthe American Statistical Association
, vol.79
, pp. 41-48
-
-
Rosenbaum, P.R.1
-
66
-
-
0000145567
-
Dropping out high school in the United States: An observational study
-
Rosenbaum, P. R. (1986). Dropping out high school in the United States: An observational study. Journal of Educational Statistics, 11, 207-224.
-
(1986)
Journal of Educational Statistics
, vol.11
, pp. 207-224
-
-
Rosenbaum, P.R.1
-
69
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
(a)
-
Rosenbaum, P. R., and Rubin, D. B. (1983a). The central role of the propensity score in observational studies for causal effects. Biometrika, 70 (1), 41-55.
-
(1983)
Biometrika
, vol.70
, Issue.1
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
70
-
-
0001679041
-
Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
-
(b)
-
Rosenbaum, P.R. and. Rubin, D. B. (1983b).Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. Journal of the Royal Statistical Society, B, 45, 212-218.
-
(1983)
Journal of the Royal Statistical Society, B
, vol.45
, pp. 212-218
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
71
-
-
84949193513
-
Reducing bias in observational studies using sub classification on the propensity score
-
Rosenbaum, P. R., and Rubin, D. B. (1984). Reducing bias in observational studies using sub classification on the propensity score. Journal of the American Statistical Association, 79, 516—524.
-
(1984)
Journal of the American Statistical Association
, vol.79
, pp. 516-524
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
72
-
-
79151472246
-
Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
-
Rosenbaum, P. R., and Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33—38.
-
(1985)
The American Statistician
, vol.33-38
, pp. 39
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
73
-
-
84889348419
-
The bias due to incomplete matching
-
Rosenbaum, P. R., and Rubin, D. B. (1985). The bias due to incomplete matching. Biometrics, 41, 103—116.
-
(1985)
Biometrics
, vol.103-116
, pp. 41
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
74
-
-
85110370283
-
Estimating causal effects of treatments in randomized and nonrandomized studies
-
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688—701.
-
(1974)
Journal of Educational Psychology
, vol.688-701
, pp. 66
-
-
Rubin, D.B.1
-
75
-
-
84880032081
-
Estimating causal effects from large data sets using propensity scores
-
Rubin, D. B. (1997). Estimating causal effects from large data sets using propensity scores. Annals of Internal Medicine, 127, 757—763.
-
(1997)
Annals of Internal Medicine
, vol.757-763
, pp. 127
-
-
Rubin, D.B.1
-
76
-
-
0002531157
-
Bayesian inference for causal effects: The role of randomization
-
Rubin, D.B. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34—58.
-
(1978)
Annals of Statistics
, vol.34-58
, pp. 6
-
-
Rubin, D.B.1
-
77
-
-
0000401306
-
Using multivariate matched sampling and regression adjustment to control bias in observational studies
-
Rubin, D. B. (1979). Using multivariate matched sampling and regression adjustment to control bias in observational studies. Journal of the American Statistical Association, 74, 318—328.
-
(1979)
Journal of the American Statistical Association
, vol.318-328
, pp. 74
-
-
Rubin, D.B.1
-
78
-
-
85143962570
-
Using propensity scores to help design observational studies: Application to the tobacco litigation
-
Rubin, D. B. (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2, 169—188.
-
(2001)
Health Services and Outcomes Research Methodology
, vol.169-188
, pp. 2
-
-
Rubin, D.B.1
-
80
-
-
84966921628
-
Matching using estimated propensity scores: Relating theory to practice
-
Rubin, D. B., and Thomas, N. (1996). Matching using estimated propensity scores: Relating theory to practice. Biometrics, 52, 249—264.
-
(1996)
Biometrics
, vol.249-264
, pp. 52
-
-
Rubin, D.B.1
Thomas, N.2
-
81
-
-
85143953264
-
Combining propensity score matching with additional adjustments for prognostic covariates
-
Rubin, D. B., and Thomas, N. (2000). Combining propensity score matching with additional adjustments for prognostic covariates. Journal of the American Statistical Association, 95, 573—585.
-
(2000)
Journal of the American Statistical Association
, vol.573-585
, pp. 95
-
-
Rubin, D.B.1
Thomas, N.2
-
82
-
-
85143950140
-
Average causal effects from non-randomized studies: A practical guide and simulated example
-
Schafer, J. L., and Kang, J. (2008). Average causal effects from non-randomized studies: A practical guide and simulated example. Psychological Methods, 13(4), 279—313.
-
(2008)
Psychological Methods
, vol.279-313
, Issue.4
, pp. 13
-
-
Schafer, J.L.1
Kang, J.2
-
83
-
-
85075827539
-
Multivariate and propensity score matching software with automated balance optimization: The matching package for R
-
Sekhon, J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: the matching package for R. Journal of Statistical Software, 42(7), 1—52.
-
(2011)
Journal of Statistical Software
, vol.1-52
, Issue.7
, pp. 42
-
-
Sekhon, J.S.1
-
84
-
-
85143961788
-
Evaluating uses of data mining techniques in propensity score estimation: A simulation study
-
Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., and Cook, E. F. (2008). Evaluating uses of data mining techniques in propensity score estimation: A simulation study. Pharmacoepidemiology and Drug Safety, 17, 546—555.
-
(2008)
Pharmacoepidemiology and Drug Safety
, vol.546-555
, pp. 17
-
-
Setoguchi, S.1
Schneeweiss, S.2
Brookhart, M.A.3
Glynn, R.J.4
Cook, E.F.5
-
85
-
-
85143943682
-
Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings
-
Shadish, W.R. (in press). Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings. Psychological Methods.
-
Psychological Methods
-
-
Shadish, W.R.1
-
86
-
-
72749127236
-
Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random to nonrandom assignment
-
Shadish, W. R., Clark, M. H., and Steiner, P. M. (2008). Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random to nonrandom assignment. Journal of the American Statistical Association, 103, 1334—1343.
-
(2008)
Journal of the American Statistical Association
, vol.103
, pp. 1334-1343
-
-
Shadish, W.R.1
Clark, M.H.2
Steiner, P.M.3
-
88
-
-
76549116121
-
A primer on propensity score analysis
-
Shadish, W. R., and Steiner, P. M. (2010). A primer on propensity score analysis. Newborn and Infant Nursing Reviews, 10(1), 19—26.
-
(2010)
Newborn and Infant Nursing Reviews
, vol.19-26
, Issue.1
, pp. 10
-
-
Shadish, W.R.1
Steiner, P.M.2
-
89
-
-
18844452973
-
Propensity score methods gave similar results to traditional regression modeling in observational studies: A systematic review
-
Shah, B. R., Laupacis, A., Hux, J. E., and Austin, P. C. (2005). Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology, 58, 550—559.
-
(2005)
Journal of Clinical Epidemiology
, vol.550-559
, pp. 58
-
-
Shah, B.R.1
Laupacis, A.2
Hux, J.E.3
Austin, P.C.4
-
90
-
-
85143944439
-
On the importance of reliable covariate measurement in selection bias adjustments using propensity scores
-
Steiner, P. M., Cook, T. D., and Shadish, W. R. (2011). On the importance of reliable covariate measurement in selection bias adjustments using propensity scores. Journal of Educational and Behavioral Statistics, 36(2), 213—236.
-
(2011)
Journal of Educational and Behavioral Statistics
, vol.213-236
, Issue.2
, pp. 36
-
-
Steiner, P.M.1
Cook, T.D.2
Shadish, W.R.3
-
91
-
-
77956791074
-
The importance of covariate selection in controlling for selection bias in observational studies
-
Steiner, P. M., Cook, T. D., Shadish, W. R., and Clark, M. H. (2010). The importance of covariate selection in controlling for selection bias in observational studies. Psychological Methods, 15(3), 250—267.
-
(2010)
Psychological Methods
, vol.250-267
, Issue.3
, pp. 15
-
-
Steiner, P.M.1
Cook, T.D.2
Shadish, W.R.3
Clark, M.H.4
-
92
-
-
85143946873
-
Analyzing individual and average causal effects via structural equation models
-
Steyer, R. (2005). Analyzing individual and average causal effects via structural equation models. Methodology, 1, 39—64.
-
(2005)
Methodology
, vol.39-64
, pp. 1
-
-
Steyer, R.1
-
93
-
-
4043125532
-
Causal regression models I: Individual and average causal effects
-
Steyer, R., Gabler, S., von Davier, A. A., Nachtigall, C., and Buhl, T. (2000). Causal regression models I: Individual and average causal effects. Methods of Psychological Research Online, 5(2), 39—71.
-
(2000)
Methods of Psychological Research Online
, vol.39-71
, Issue.2
, pp. 5
-
-
Steyer, R.1
Gabler, S.2
von Davier, A.A.3
Nachtigall, C.4
Buhl, T.5
-
94
-
-
4043125532
-
Causal regression models II: Unconfoundedness and causal unbiasedness
-
Steyer, R., Gabler, S., von Davier, A. A. and Nachtigall, C. (2000). Causal regression models II: Unconfoundedness and causal unbiasedness. Methods of Psychological Research Online, 5(3), 55—87.
-
(2000)
Methods of Psychological Research Online
, vol.55-87
, Issue.3
, pp. 5
-
-
Steyer, R.1
Gabler, S.2
von Davier, A.A.3
Nachtigall, C.4
-
95
-
-
77957806232
-
Matching methods for causal inference: A review and a look forward
-
Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical Sciences, 25(1), 1—21.
-
(2010)
Statistical Sciences
, vol.1-21
, Issue.1
, pp. 25
-
-
Stuart, E.A.1
-
96
-
-
43749098314
-
Best practices in quasi-experimental designs: Matching methods for causal inference
-
Thousand Oaks, CA: Sage Publications
-
Stuart, E. A., and Rubin, D. B. (2007). Best practices in quasi-experimental designs: matching methods for causal inference. In: Best Practices in Quantitative Methods, Chapter 11, Osborne J (Ed.). (pp. 155—176), Thousand Oaks, CA: Sage Publications.
-
(2007)
Best Practices in Quantitative Methods
, vol.155-176
, pp. 11
-
-
Stuart, E.A.1
Rubin, D.B.2
Osborne, J.3
-
97
-
-
33645226210
-
A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
-
Stürmer, T., Joshi, M., Glynn, R. J., Avorn, J., Rothman, K. J., and Schneeweiss, S. (2006). A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. Journal of Clinical Epidemiology, 59, 437-447.
-
(2006)
Journal of Clinical Epidemiology
, vol.59
, pp. 437-447
-
-
Stürmer, T.1
Joshi, M.2
Glynn, R.J.3
Avorn, J.4
Rothman, K.J.5
Schneeweiss, S.6
-
98
-
-
33745837600
-
-
Boca Raton: Chapman and Hall/CRC
-
Wood, S.N. (2006). Generalized Additive Models. An Introduction with R. Boca Raton: Chapman and Hall/CRC.
-
(2006)
Generalized Additive Models
-
-
Wood, S.N.1
|