메뉴 건너뛰기




Volumn 1, Issue , 2013, Pages 237-259

Matching and Propensity Scores

Author keywords

inverse propensity weighting; Matching; observational study; potential outcomes; propensity score regression estimation; propensity score subclassification; propensity scores; Rubin Causal Model; sensitivity analyses

Indexed keywords


EID: 85143958533     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1093/oxfordhb/9780199934874.013.0013     Document Type: Chapter
Times cited : (87)

References (98)
  • 1
    • 33749045048 scopus 로고    scopus 로고
    • Implementing matching estimators for average treatment effects in Stata
    • Abadie, A., Drukker, D., Herr, J. L., and Imbens, G. W. (2004). Implementing matching estimators for average treatment effects in Stata. The Stata Journal, 4, 290—311.
    • (2004) The Stata Journal , vol.290-311 , pp. 4
    • Abadie, A.1    Drukker, D.2    Herr, J.L.3    Imbens, G.W.4
  • 3
    • 85050847411 scopus 로고
    • The computerized construction of a matched sample
    • Althauser, R., and Rubin, D. B. (1970). The computerized construction of a matched sample. American Journal of Sociology, 76, 325-346.
    • (1970) American Journal of Sociology , vol.76 , pp. 325-346
    • Althauser, R.1    Rubin, D.B.2
  • 4
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang, H., and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics, 61, 962-972.
    • (2005) Biometrics , vol.61 , pp. 962-972
    • Bang, H.1    Robins, J.M.2
  • 5
    • 85129712964 scopus 로고    scopus 로고
    • Estimation of average treatment effects based on propensity scores
    • Becker, S. O., Ichino, A. (2002). Estimation of average treatment effects based on propensity scores. The Stata Journal, 2, 358-377.
    • (2002) The Stata Journal , vol.2 , pp. 358-377
    • Becker, S.O.1    Ichino, A.2
  • 6
    • 31944452324 scopus 로고    scopus 로고
    • An introduction to ensemble methods for data analysis
    • Berk, R. A. (2006). An introduction to ensemble methods for data analysis. Sociological Methods and Research, 34, 263-295.
    • (2006) Sociological Methods and Research , vol.34 , pp. 263-295
    • Berk, R.A.1
  • 9
    • 0014297593 scopus 로고
    • The effectiveness of adjustment by subclassification in removing bias in observational studies
    • Cochran, W. G. (1968): The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics, 24, 295-313.
    • (1968) Biometrics , vol.24 , pp. 295-313
    • Cochran, W.G.1
  • 11
    • 56749125132 scopus 로고    scopus 로고
    • Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons
    • Cook, T. D., Shadish, W. R., and Wong, V. C. (2008). Three conditions under which experiments and observational studies produce comparable causal estimates: New findings from within-study comparisons. Journal of Policy Analysis and Management, 27(4), 724-750.
    • (2008) Journal of Policy Analysis and Management , vol.27 , Issue.4 , pp. 724-750
    • Cook, T.D.1    Shadish, W.R.2    Wong, V.C.3
  • 12
    • 77949623528 scopus 로고    scopus 로고
    • Case matching and the reduction of selection bias in quasi-experiments: The relative importance of the pretest as a covariate, unreliable measurement and mode of data analysis
    • Cook, T. D., and Steiner, P. M. (2010). Case matching and the reduction of selection bias in quasi-experiments: The relative importance of the pretest as a covariate, unreliable measurement and mode of data analysis. Psychological Methods, 15(1), 56-68.
    • (2010) Psychological Methods , vol.15 , Issue.1 , pp. 56-68
    • Cook, T.D.1    Steiner, P.M.2
  • 13
    • 77951656304 scopus 로고    scopus 로고
    • Assessing how bias reduction is influenced by covariate choice, unreliability and data analytic mode: An analysis of different kinds of within-study comparisons in different substantive domains
    • Cook, T. D., Steiner, P. M., and Pohl, S. (2009). Assessing how bias reduction is influenced by covariate choice, unreliability and data analytic mode: An analysis of different kinds of within-study comparisons in different substantive domains. Multivariate Behavioral Research, 44, 828-847.
    • (2009) Multivariate Behavioral Research , vol.44 , pp. 828-847
    • Cook, T.D.1    Steiner, P.M.2    Pohl, S.3
  • 15
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in non-experimental studies: Re-evaluating the evaluation oftraining programs
    • Dehejia, R., and Wahba, S. (1999). Causal effects in non-experimental studies: Re-evaluating the evaluation oftraining programs. Journal of the American Statistical Association, 94, 1053-1062.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1053-1062
    • Dehejia, R.1    Wahba, S.2
  • 16
    • 0036102924 scopus 로고    scopus 로고
    • Propensity score-matching methods for nonexperimental causal studies
    • Dehejia, R., and Wahba, S. (2002). Propensity score-matching methods for nonexperimental causal studies. The Review of Economics and Statistics, 84(1): 151-161.
    • (2002) The Review of Economics and Statistics , vol.84 , Issue.1 , pp. 151-161
    • Dehejia, R.1    Wahba, S.2
  • 18
    • 0041416027 scopus 로고    scopus 로고
    • Non experimental versus experimental estimates of earnings impacts
    • Glazerman, S., Levy, D. M., and Myers, D. (2003). Non experimental versus experimental estimates of earnings impacts. The Annals of the American Academy, 589, 63-93.
    • (2003) The Annals of the American Academy , vol.589 , pp. 63-93
    • Glazerman, S.1    Levy, D.M.2    Myers, D.3
  • 19
    • 0003138938 scopus 로고
    • Comparison of multivariate matching methods: Structures, distances, and algorithms
    • Gu, X., and Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2, 405-420.
    • (1993) Journal of Computational and Graphical Statistics , vol.2 , pp. 405-420
    • Gu, X.1    Rosenbaum, P.R.2
  • 21
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the SAT
    • Hansen, B. B. (2004). Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association, 99, 609-618.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 609-618
    • Hansen, B.B.1
  • 24
    • 0001065872 scopus 로고
    • Shadow prices, market wages, and labor supply
    • Heckman, J. J. (1974). Shadow prices, market wages, and labor supply. Econometrica, 42, 679-694.
    • (1974) Econometrica , vol.42 , pp. 679-694
    • Heckman, J.J.1
  • 25
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Heckman, J. J. (1979). Sample selection bias as a specification error. Econometriaca, 47, 153-161.
    • (1979) Econometriaca , vol.47 , pp. 153-161
    • Heckman, J.J.1
  • 26
    • 33644867915 scopus 로고    scopus 로고
    • The scientific model of causality
    • Heckman, J. J. (2005). The scientific model of causality. Sociological Methodology, 35(1), 1-98.
    • (2005) Sociological Methodology , vol.35 , Issue.1 , pp. 1-98
    • Heckman, J.J.1
  • 27
    • 0001622038 scopus 로고    scopus 로고
    • Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme
    • Heckman, J. J., Ichimura, H., and Todd, P. E. (1997). Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. Review ofEconomic Studies, 64, 605-654.
    • (1997) Review Ofeconomic Studies , vol.64 , pp. 605-654
    • Heckman, J.J.1    Ichimura, H.2    Todd, P.E.3
  • 29
    • 34249885738 scopus 로고    scopus 로고
    • Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    • Ho, D. E., Imai, K., King, G., and Stuart, E. A. (2007). Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis, 15, 199-236.
    • (2007) Political Analysis , vol.15 , pp. 199-236
    • Ho, D.E.1    Imai, K.2    King, G.3    Stuart, E.A.4
  • 32
    • 85143955224 scopus 로고    scopus 로고
    • Marginal mean weighting through stratification: Adjustment for selection bias in multi-level data
    • Hong, G. (2009). Marginal mean weighting through stratification: Adjustment for selection bias in multi-level data. Unpublished Manuscript.
    • (2009) Unpublished Manuscript
    • Hong, G.1
  • 33
    • 85143950263 scopus 로고    scopus 로고
    • Evaluating kindergarten retention policy: A case study of causal inference for multilevel observational data
    • Hong, G., and Raudenbush, S. W. (2006). Evaluating kindergarten retention policy: A case study of causal inference for multilevel observational data. Journal of the American Statistical Association, 101, 901—910.
    • (2006) Journal of the American Statistical Association , vol.901-910 , pp. 101
    • Hong, G.1    Raudenbush, S.W.2
  • 36
    • 4944223958 scopus 로고    scopus 로고
    • Causal inference with general treatment regimes: Generalizing the propensitys core
    • Imai, K. and van Dyk, D.A. (2004). Causal inference with general treatment regimes: Generalizing the propensitys core. Journal of the American Statistical Association, 99, 854—866.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 854-866
    • Imai, K.1    Van Dyk, D.A.2
  • 37
    • 0000724291 scopus 로고    scopus 로고
    • The role of the propensity score in estimating dose-response functions
    • Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika, 87, 706—710.
    • (2000) Biometrika , vol.87 , pp. 706-710
    • Imbens, G.W.1
  • 38
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • Imbens, G. W (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and Statistics, 86(1), 4—29.
    • (2004) Review of Economics and Statistics , vol.86 , Issue.1 , pp. 4-29
    • Imbens, G.W.1
  • 40
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating population means from incomplete data
    • Kang, J., and Schafer, J. L. (2007). Demystifying double robustness: a comparison of alternative strategies for estimating population means from incomplete data. Statistical Science, 26, 523-539.
    • (2007) Statistical Science , vol.26 , pp. 523-539
    • Kang, J.1    Schafer, J.L.2
  • 41
    • 0033261299 scopus 로고    scopus 로고
    • An extension of the propensity score adjustment method for the analysis of group differences in MIMIC models
    • Kaplan, D. (1999). An extension of the propensity score adjustment method for the analysis of group differences in MIMIC models. Multivariate Behavioral Research, 34(4), 467-492.
    • (1999) Multivariate Behavioral Research , vol.34 , Issue.4 , pp. 467-492
    • Kaplan, D.1
  • 43
    • 67449122300 scopus 로고    scopus 로고
    • Match cases to controls using variable optimal matching
    • http://mayoresearch.mayo.edu/mayo/resea-rch/biostat/upload/gmatch.sas
    • Kosanke, J., and Bergstralh, E. (2004). Match cases to controls using variable optimal matching: URL http://mayo-research.mayo.edu/mayo/research/biostat/upload/vmatch.sas and Match 1 or more controls to cases using the GREEDY algorithm: URL http://mayoresearch.mayo.edu/mayo/resea-rch/biostat/upload/gmatch.sas.
    • (2004) Match 1 Or More Controls to Cases Using the GREEDY Algorithm
    • Kosanke, J.1    Bergstralh, E.2
  • 44
    • 85143954694 scopus 로고    scopus 로고
    • rbounds: Perform Rosenbaum bounds sensitivity tests for matched data
    • Keele, L. J. (2009). rbounds: Perform Rosenbaum bounds sensitivity tests for matched data. R package. http://CRAN.R-project.org/package=rbounds.
    • (2009) R Package
    • Keele, L.J.1
  • 45
    • 85143943941 scopus 로고    scopus 로고
    • Small samples and propensity score methods
    • Kolar, A., and Vehovar, V. (2012). Small samples and propensity score methods. Working Paper.
    • (2012) Working Paper
    • Kolar, A.1    Vehovar, V.2
  • 47
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee, B., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine, 29, 337-346.
    • (2010) Statistics in Medicine , vol.29 , pp. 337-346
    • Lee, B.1    Lessler, J.2    Stuart, E.A.3
  • 48
    • 4043152946 scopus 로고    scopus 로고
    • PSMATCH2. Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing
    • Leuven, E., and Sianesi, B. (2003). PSMATCH2. Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. Statistical Software Components S432001, Boston College Department of Economics.
    • (2003) Statistical Software Components S432001, Boston College Department of Economics
    • Leuven, E.1    Sianesi, B.2
  • 49
    • 8644254410 scopus 로고    scopus 로고
    • Robust likelihood-based analysis of multivariate data with missing values
    • Little, R. J. A., and An, H. (2004). Robust likelihood-based analysis of multivariate data with missing values. Statistica Sinica, 14, 949-968.
    • (2004) Statistica Sinica , vol.14 , pp. 949-968
    • Little, R.J.A.1    An, H.2
  • 50
    • 28444464482 scopus 로고    scopus 로고
    • Propensity scores: An introduction and experimental test
    • Luellen, J. K, Shadish, W. R., and Clark, M.H. (2005). Propensity scores: An introduction and experimental test. Evaluation Review, 29, 530-558.
    • (2005) Evaluation Review , vol.29 , pp. 530-558
    • Luellen, J.K.1    Shadish, W.R.2    Clark, M.H.3
  • 51
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford, J. K., and Davidian, M. (2004). Stratification and weighting via propensity score in estimation of causal treatment effects: A comparative study. Statistical Medicine, 23, 2937-2960.
    • (2004) Statistical Medicine , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 54
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey, D. F., Ridgeway, G., and Morral, A. R. (2009). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9, 403-425.
    • (2009) Psychological Methods , vol.9 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 61
    • 0001415308 scopus 로고    scopus 로고
    • Associations, causation, and marginal structural models
    • Robins, J. M. (1999). Associations, causation, and marginal structural models. Synthese, 101, 151-179.
    • (1999) Synthese , vol.101 , pp. 151-179
    • Robins, J.M.1
  • 62
    • 21844487694 scopus 로고
    • Semi parametric efficiency in multivariate regression models with missing data
    • Robins, J. M., and Rotnitzky, A. (1995). Semi parametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association, 90, 122-129.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 122-129
    • Robins, J.M.1    Rotnitzky, A.2
  • 63
    • 0005976738 scopus 로고    scopus 로고
    • Comment on ‘Inference for semiparametric models: Some questions and answers’ by Bickel and Kwon
    • Robins, J. M., and Rotnitzky, A. (2001). Comment on ‘Inference for semiparametric models: Some questions and answers’ by Bickel and Kwon. Statistica Sinica, 11, 920-936.
    • (2001) Statistica Sinica , vol.11 , pp. 920-936
    • Robins, J.M.1    Rotnitzky, A.2
  • 64
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90, 106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 65
    • 0242337835 scopus 로고
    • From association to causation in observational studies: The role of tests of strongly ignorable treatment assignment
    • Rosenbaum, P. R. (1984). From association to causation in observational studies: The role of tests of strongly ignorable treatment assignment. Journal ofthe American Statistical Association, 79, 41-48.
    • (1984) Journal Ofthe American Statistical Association , vol.79 , pp. 41-48
    • Rosenbaum, P.R.1
  • 66
    • 0000145567 scopus 로고
    • Dropping out high school in the United States: An observational study
    • Rosenbaum, P. R. (1986). Dropping out high school in the United States: An observational study. Journal of Educational Statistics, 11, 207-224.
    • (1986) Journal of Educational Statistics , vol.11 , pp. 207-224
    • Rosenbaum, P.R.1
  • 69
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • (a)
    • Rosenbaum, P. R., and Rubin, D. B. (1983a). The central role of the propensity score in observational studies for causal effects. Biometrika, 70 (1), 41-55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 70
    • 0001679041 scopus 로고
    • Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
    • (b)
    • Rosenbaum, P.R. and. Rubin, D. B. (1983b).Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. Journal of the Royal Statistical Society, B, 45, 212-218.
    • (1983) Journal of the Royal Statistical Society, B , vol.45 , pp. 212-218
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 71
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using sub classification on the propensity score
    • Rosenbaum, P. R., and Rubin, D. B. (1984). Reducing bias in observational studies using sub classification on the propensity score. Journal of the American Statistical Association, 79, 516—524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 72
    • 79151472246 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum, P. R., and Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33—38.
    • (1985) The American Statistician , vol.33-38 , pp. 39
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 73
    • 84889348419 scopus 로고
    • The bias due to incomplete matching
    • Rosenbaum, P. R., and Rubin, D. B. (1985). The bias due to incomplete matching. Biometrics, 41, 103—116.
    • (1985) Biometrics , vol.103-116 , pp. 41
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 74
    • 85110370283 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688—701.
    • (1974) Journal of Educational Psychology , vol.688-701 , pp. 66
    • Rubin, D.B.1
  • 75
    • 84880032081 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • Rubin, D. B. (1997). Estimating causal effects from large data sets using propensity scores. Annals of Internal Medicine, 127, 757—763.
    • (1997) Annals of Internal Medicine , vol.757-763 , pp. 127
    • Rubin, D.B.1
  • 76
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin, D.B. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34—58.
    • (1978) Annals of Statistics , vol.34-58 , pp. 6
    • Rubin, D.B.1
  • 77
    • 0000401306 scopus 로고
    • Using multivariate matched sampling and regression adjustment to control bias in observational studies
    • Rubin, D. B. (1979). Using multivariate matched sampling and regression adjustment to control bias in observational studies. Journal of the American Statistical Association, 74, 318—328.
    • (1979) Journal of the American Statistical Association , vol.318-328 , pp. 74
    • Rubin, D.B.1
  • 78
    • 85143962570 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • Rubin, D. B. (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2, 169—188.
    • (2001) Health Services and Outcomes Research Methodology , vol.169-188 , pp. 2
    • Rubin, D.B.1
  • 80
    • 84966921628 scopus 로고    scopus 로고
    • Matching using estimated propensity scores: Relating theory to practice
    • Rubin, D. B., and Thomas, N. (1996). Matching using estimated propensity scores: Relating theory to practice. Biometrics, 52, 249—264.
    • (1996) Biometrics , vol.249-264 , pp. 52
    • Rubin, D.B.1    Thomas, N.2
  • 81
    • 85143953264 scopus 로고    scopus 로고
    • Combining propensity score matching with additional adjustments for prognostic covariates
    • Rubin, D. B., and Thomas, N. (2000). Combining propensity score matching with additional adjustments for prognostic covariates. Journal of the American Statistical Association, 95, 573—585.
    • (2000) Journal of the American Statistical Association , vol.573-585 , pp. 95
    • Rubin, D.B.1    Thomas, N.2
  • 82
    • 85143950140 scopus 로고    scopus 로고
    • Average causal effects from non-randomized studies: A practical guide and simulated example
    • Schafer, J. L., and Kang, J. (2008). Average causal effects from non-randomized studies: A practical guide and simulated example. Psychological Methods, 13(4), 279—313.
    • (2008) Psychological Methods , vol.279-313 , Issue.4 , pp. 13
    • Schafer, J.L.1    Kang, J.2
  • 83
    • 85075827539 scopus 로고    scopus 로고
    • Multivariate and propensity score matching software with automated balance optimization: The matching package for R
    • Sekhon, J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: the matching package for R. Journal of Statistical Software, 42(7), 1—52.
    • (2011) Journal of Statistical Software , vol.1-52 , Issue.7 , pp. 42
    • Sekhon, J.S.1
  • 85
    • 85143943682 scopus 로고    scopus 로고
    • Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings
    • Shadish, W.R. (in press). Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings. Psychological Methods.
    • Psychological Methods
    • Shadish, W.R.1
  • 86
    • 72749127236 scopus 로고    scopus 로고
    • Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random to nonrandom assignment
    • Shadish, W. R., Clark, M. H., and Steiner, P. M. (2008). Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random to nonrandom assignment. Journal of the American Statistical Association, 103, 1334—1343.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1334-1343
    • Shadish, W.R.1    Clark, M.H.2    Steiner, P.M.3
  • 89
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods gave similar results to traditional regression modeling in observational studies: A systematic review
    • Shah, B. R., Laupacis, A., Hux, J. E., and Austin, P. C. (2005). Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology, 58, 550—559.
    • (2005) Journal of Clinical Epidemiology , vol.550-559 , pp. 58
    • Shah, B.R.1    Laupacis, A.2    Hux, J.E.3    Austin, P.C.4
  • 90
    • 85143944439 scopus 로고    scopus 로고
    • On the importance of reliable covariate measurement in selection bias adjustments using propensity scores
    • Steiner, P. M., Cook, T. D., and Shadish, W. R. (2011). On the importance of reliable covariate measurement in selection bias adjustments using propensity scores. Journal of Educational and Behavioral Statistics, 36(2), 213—236.
    • (2011) Journal of Educational and Behavioral Statistics , vol.213-236 , Issue.2 , pp. 36
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3
  • 91
    • 77956791074 scopus 로고    scopus 로고
    • The importance of covariate selection in controlling for selection bias in observational studies
    • Steiner, P. M., Cook, T. D., Shadish, W. R., and Clark, M. H. (2010). The importance of covariate selection in controlling for selection bias in observational studies. Psychological Methods, 15(3), 250—267.
    • (2010) Psychological Methods , vol.250-267 , Issue.3 , pp. 15
    • Steiner, P.M.1    Cook, T.D.2    Shadish, W.R.3    Clark, M.H.4
  • 92
    • 85143946873 scopus 로고    scopus 로고
    • Analyzing individual and average causal effects via structural equation models
    • Steyer, R. (2005). Analyzing individual and average causal effects via structural equation models. Methodology, 1, 39—64.
    • (2005) Methodology , vol.39-64 , pp. 1
    • Steyer, R.1
  • 95
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical Sciences, 25(1), 1—21.
    • (2010) Statistical Sciences , vol.1-21 , Issue.1 , pp. 25
    • Stuart, E.A.1
  • 96
    • 43749098314 scopus 로고    scopus 로고
    • Best practices in quasi-experimental designs: Matching methods for causal inference
    • Thousand Oaks, CA: Sage Publications
    • Stuart, E. A., and Rubin, D. B. (2007). Best practices in quasi-experimental designs: matching methods for causal inference. In: Best Practices in Quantitative Methods, Chapter 11, Osborne J (Ed.). (pp. 155—176), Thousand Oaks, CA: Sage Publications.
    • (2007) Best Practices in Quantitative Methods , vol.155-176 , pp. 11
    • Stuart, E.A.1    Rubin, D.B.2    Osborne, J.3
  • 97
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Stürmer, T., Joshi, M., Glynn, R. J., Avorn, J., Rothman, K. J., and Schneeweiss, S. (2006). A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. Journal of Clinical Epidemiology, 59, 437-447.
    • (2006) Journal of Clinical Epidemiology , vol.59 , pp. 437-447
    • Stürmer, T.1    Joshi, M.2    Glynn, R.J.3    Avorn, J.4    Rothman, K.J.5    Schneeweiss, S.6
  • 98
    • 33745837600 scopus 로고    scopus 로고
    • Boca Raton: Chapman and Hall/CRC
    • Wood, S.N. (2006). Generalized Additive Models. An Introduction with R. Boca Raton: Chapman and Hall/CRC.
    • (2006) Generalized Additive Models
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.