-
2
-
-
80052912117
-
Object segmentation by long term analysis of point trajectories
-
T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010.
-
(2010)
ECCV
-
-
Brox, T.1
Malik, J.2
-
3
-
-
85007202925
-
Dynamic concept composition for zero-example event detection
-
X. Chang, Y. Yang, G. Long, C. Zhang, and A. G. Hauptmann. Dynamic concept composition for zero-example event detection. In AAAI, 2016.
-
(2016)
AAAI
-
-
Chang, X.1
Yang, Y.2
Long, G.3
Zhang, C.4
Hauptmann, A.G.5
-
4
-
-
84953291036
-
Disc: Deep image saliency computing via progressive representation learning
-
T. Chen, L. Lin, L. Liu, X. Luo, and X. Li. Disc: Deep image saliency computing via progressive representation learning. TNNLS, 27(6):1135-1149, 2016.
-
(2016)
TNNLS
, vol.27
, Issue.6
, pp. 1135-1149
-
-
Chen, T.1
Lin, L.2
Liu, L.3
Luo, X.4
Li, X.5
-
5
-
-
84923094805
-
Global contrast based salient region detection
-
M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S. Hu. Global contrast based salient region detection. TPAMI, 37(3):569-582, 2015.
-
(2015)
TPAMI
, vol.37
, Issue.3
, pp. 569-582
-
-
Cheng, M.1
Mitra, N.J.2
Huang, X.3
Torr, P.H.4
Hu, S.5
-
6
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
7
-
-
84926497888
-
Background prior-based salient object detection via deep reconstruction residual
-
J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu. Background prior-based salient object detection via deep reconstruction residual. TCSVT, 25(8):1309-1321, 2015.
-
(2015)
TCSVT
, vol.25
, Issue.8
, pp. 1309-1321
-
-
Han, J.1
Zhang, D.2
Hu, X.3
Guo, L.4
Ren, J.5
Wu, F.6
-
8
-
-
84904680235
-
Weakly supervised learning of object segmentations from web-scale video
-
G. Hartmann, M. Grundmann, J. Hoffman, D. Tsai, V. Kwatra, O. Madani, S. Vijayanarasimhan, I. Essa, J. Rehg, and R. Sukthankar. Weakly supervised learning of object segmentations from web-scale video. In ECCV, 2012.
-
(2012)
ECCV
-
-
Hartmann, G.1
Grundmann, M.2
Hoffman, J.3
Tsai, D.4
Kwatra, V.5
Madani, O.6
Vijayanarasimhan, S.7
Essa, I.8
Rehg, J.9
Sukthankar, R.10
-
9
-
-
84959205272
-
Supervoxel-consistent foreground propagation in video
-
S. D. Jain and K. Grauman. Supervoxel-consistent foreground propagation in video. In ECCV, 2014.
-
(2014)
ECCV
-
-
Jain, S.D.1
Grauman, K.2
-
10
-
-
85011013826
-
Cats: Co-saliency activated tracklet selection for video co-localization
-
K. R. Jerripothula, J. Cai, and J. Yuan. Cats: Co-saliency activated tracklet selection for video co-localization. In ECCV, 2016.
-
(2016)
ECCV
-
-
Jerripothula, K.R.1
Cai, J.2
Yuan, J.3
-
11
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM-MM, 2014.
-
(2014)
ACM-MM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
12
-
-
84913585680
-
Easy samples first: Self-paced reranking for zero-example multimedia search
-
L. Jiang, D. Meng, T. Mitamura, and A. G. Hauptmann. Easy samples first: Self-paced reranking for zero-example multimedia search. In ACM-MM, 2014.
-
(2014)
ACM-MM
-
-
Jiang, L.1
Meng, D.2
Mitamura, T.3
Hauptmann, A.G.4
-
13
-
-
84937895884
-
Self-paced learning with diversity
-
L. Jiang, D. Meng, S.-I. Yu, Z. Lan, S. Shan, and A. Hauptmann. Self-paced learning with diversity. In NIPS, 2014.
-
(2014)
NIPS
-
-
Jiang, L.1
Meng, D.2
Yu, S.-I.3
Lan, Z.4
Shan, S.5
Hauptmann, A.6
-
14
-
-
84990042872
-
Seed, expand and constrain: Three principles for weakly-supervised image segmentation
-
A. Kolesnikov and C. H. Lampert. Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In ECCV, 2016.
-
(2016)
ECCV
-
-
Kolesnikov, A.1
Lampert, C.H.2
-
15
-
-
85161967298
-
Self-paced learning for latent variable models
-
M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010.
-
(2010)
NIPS
-
-
Kumar, M.P.1
Packer, B.2
Koller, D.3
-
16
-
-
84863045576
-
Key-segments for video object segmentation
-
Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, 2011.
-
(2011)
ICCV
-
-
Lee, Y.J.1
Kim, J.2
Grauman, K.3
-
17
-
-
84946554818
-
Predicting eye fixations using convolutional neural networks
-
N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting eye fixations using convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Liu, N.1
Han, J.2
Zhang, D.3
Wen, S.4
Liu, T.5
-
18
-
-
84911424742
-
Weakly supervised multiclass video segmentation
-
X. Liu, D. Tao, M. Song, Y. Ruan, C. Chen, and J. Bu. Weakly supervised multiclass video segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Liu, X.1
Tao, D.2
Song, M.3
Ruan, Y.4
Chen, C.5
Bu, J.6
-
20
-
-
84898831797
-
Fast object segmentation in unconstrained video
-
A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In ICCV, 2013.
-
(2013)
ICCV
-
-
Papazoglou, A.1
Ferrari, V.2
-
21
-
-
84973922870
-
Constrained convolutional neural networks for weakly supervised segmentation
-
D. Pathak, P. Krahenbuhl, and T. Darrell. Constrained convolutional neural networks for weakly supervised segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Pathak, D.1
Krahenbuhl, P.2
Darrell, T.3
-
22
-
-
84986253571
-
A benchmark dataset and evaluation methodology for video object segmentation
-
F. Perazzi, J. P.-T. B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In CVPR, 2016.
-
(2016)
CVPR
-
-
Perazzi, F.1
McWilliams, J.P.-T.B.2
Van Gool, L.3
Gross, M.4
Sorkine-Hornung, A.5
-
23
-
-
84959200585
-
From image-level to pixellevel labeling with convolutional networks
-
P. O. Pinheiro and R. Collobert. From image-level to pixellevel labeling with convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Pinheiro, P.O.1
Collobert, R.2
-
24
-
-
84866674032
-
Learning object class detectors from weakly annotated video
-
A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012.
-
(2012)
CVPR
-
-
Prest, A.1
Leistner, C.2
Civera, J.3
Schmid, C.4
Ferrari, V.5
-
26
-
-
84877780666
-
Shifting weights: Adapting object detectors from image to video
-
K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller. Shifting weights: Adapting object detectors from image to video. In NIPS, 2012.
-
(2012)
NIPS
-
-
Tang, K.1
Ramanathan, V.2
Fei-Fei, L.3
Koller, D.4
-
27
-
-
84887363653
-
Discriminative segment annotation in weakly labeled video
-
K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei. Discriminative segment annotation in weakly labeled video. In CVPR, 2013.
-
(2013)
CVPR
-
-
Tang, K.1
Sukthankar, R.2
Yagnik, J.3
Fei-Fei, L.4
-
28
-
-
84959181650
-
Causal video object segmentation from persistence of occlusions
-
B. Taylor, V. Karasev, and S. Soattoc. Causal video object segmentation from persistence of occlusions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Taylor, B.1
Karasev, V.2
Soattoc, S.3
-
29
-
-
0037500818
-
Contextual priming for object detection
-
A. Torralba. Contextual priming for object detection. IJCV, 53(2):169-191, 2003.
-
(2003)
IJCV
, vol.53
, Issue.2
, pp. 169-191
-
-
Torralba, A.1
-
31
-
-
84959191527
-
Saliency-aware geodesic video object segmentation
-
W. Wang, J. Shen, and F. Porikli. Saliency-aware geodesic video object segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Wang, W.1
Shen, J.2
Porikli, F.3
-
33
-
-
85015810136
-
Revealing event saliency in unconstrained video collection
-
D. Zhang, J. Han, L. Jiang, S. Ye, and X. Chang. Revealing event saliency in unconstrained video collection. TIP, 26(4):1746-1758, 2017.
-
(2017)
TIP
, vol.26
, Issue.4
, pp. 1746-1758
-
-
Zhang, D.1
Han, J.2
Jiang, L.3
Ye, S.4
Chang, X.5
-
34
-
-
84992298269
-
Detection of cosalient objects by looking deep and wide
-
D. Zhang, J. Han, C. Li, J. Wang, and X. Li. Detection of cosalient objects by looking deep and wide. IJCV, 120(2):215-232, 2016.
-
(2016)
IJCV
, vol.120
, Issue.2
, pp. 215-232
-
-
Zhang, D.1
Han, J.2
Li, C.3
Wang, J.4
Li, X.5
-
35
-
-
84887400612
-
Video object segmentation through spatially accurate and temporally dense extraction of primary object regions
-
D. Zhang, O. Javed, and M. Shah. Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In CVPR, 2013.
-
(2013)
CVPR
-
-
Zhang, D.1
Javed, O.2
Shah, M.3
-
36
-
-
84973896942
-
A self-paced multiple-instance learning framework for cosaliency detection
-
D. Zhang, D. Meng, C. Li, L. Jiang, Q. Zhao, and J. Han. A self-paced multiple-instance learning framework for cosaliency detection. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zhang, D.1
Meng, D.2
Li, C.3
Jiang, L.4
Zhao, Q.5
Han, J.6
-
37
-
-
85006136405
-
Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning
-
D. Zhang, D. Meng, L. Zhao, and J. Han. Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning. In IJCAI, 2016.
-
(2016)
IJCAI
-
-
Zhang, D.1
Meng, D.2
Zhao, L.3
Han, J.4
-
38
-
-
84959213700
-
Weakly supervised semantic segmentation for social images
-
W. Zhang, S. Zeng, D. Wang, and X. Xue. Weakly supervised semantic segmentation for social images. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhang, W.1
Zeng, S.2
Wang, D.3
Xue, X.4
-
39
-
-
84959236972
-
Semantic object segmentation via detection in weakly labeled video
-
Y. Zhang, X. Chen, J. Li, C. Wang, and C. Xia. Semantic object segmentation via detection in weakly labeled video. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhang, Y.1
Chen, X.2
Li, J.3
Wang, C.4
Xia, C.5
-
40
-
-
84949899052
-
Self-paced learning for matrix factorization
-
Q. Zhao, D. Meng, L. Jiang, Q. Xie, Z. Xu, and A. G. Hauptmann. Self-paced learning for matrix factorization. In AAAI, 2015.
-
(2015)
AAAI
-
-
Zhao, Q.1
Meng, D.2
Jiang, L.3
Xie, Q.4
Xu, Z.5
Hauptmann, A.G.6
|