메뉴 건너뛰기




Volumn , Issue , 2017, Pages 382-389

A Comparative Analysis of Deep Learning Techniques for Sub-Tropical Crop Types Recognition from Multitemporal Optical/SAR Image Sequences

Author keywords

Autoencoders; Convolutional Neural Networks; Crop Recognition; Multitemporal Images

Indexed keywords

AGRICULTURE; CLASSIFICATION (OF INFORMATION); CONVOLUTION; CROPS; DEEP LEARNING; LEARNING SYSTEMS; NEURAL NETWORKS; REMOTE SENSING; SYNTHETIC APERTURE RADAR;

EID: 85040603108     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SIBGRAPI.2017.57     Document Type: Conference Paper
Times cited : (21)

References (26)
  • 1
    • 84920506757 scopus 로고    scopus 로고
    • Application of remote sensors in mapping rice area and forecasting its production: A review
    • M. K. Mosleh, Q. K. Hassan, and E. H. Chowdhury, "Application of remote sensors in mapping rice area and forecasting its production: A review, " Sensors, vol. 15, no. 1, pp. 769-791, 2015.
    • (2015) Sensors , vol.15 , Issue.1 , pp. 769-791
    • Mosleh, M.K.1    Hassan, Q.K.2    Chowdhury, E.H.3
  • 4
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • D. Lu and Q. Weng, "A survey of image classification methods and techniques for improving classification performance, " International journal of Remote sensing, vol. 28, no. 5, pp. 823-870, 2007.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 5
    • 80955172246 scopus 로고    scopus 로고
    • Multitemporal region-based classification of high-resolution images by markov random fields and multiscale segmentation
    • G. Moser and S. B. Serpico, "Multitemporal region-based classification of high-resolution images by markov random fields and multiscale segmentation, " in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International. IEEE, 2011, pp. 102-105.
    • (2011) Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International. IEEE , pp. 102-105
    • Moser, G.1    Serpico, S.B.2
  • 6
    • 84880397637 scopus 로고    scopus 로고
    • Hidden markov models for real-time estimation of corn progress stages using modis and meteorological data
    • Y. Shen, L. Wu, L. Di, G. Yu, H. Tang, G. Yu, and Y. Shao, "Hidden markov models for real-time estimation of corn progress stages using modis and meteorological data, " Remote Sensing, vol. 5, no. 4, pp. 1734-1753, 2013.
    • (2013) Remote Sensing , vol.5 , Issue.4 , pp. 1734-1753
    • Shen, Y.1    Wu, L.2    Di, L.3    Yu, G.4    Tang, H.5    Yu, G.6    Shao, Y.7
  • 7
    • 84937897682 scopus 로고    scopus 로고
    • A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data
    • S. Siachalou, G. Mallinis, and M. Tsakiri-Strati, "A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data, " Remote Sensing, vol. 7, no. 4, pp. 3633-3650, 2015.
    • (2015) Remote Sensing , vol.7 , Issue.4 , pp. 3633-3650
    • Siachalou, S.1    Mallinis, G.2    Tsakiri-Strati, M.3
  • 8
    • 41249083722 scopus 로고    scopus 로고
    • Using local transition probability models in markov random fields for forest change detection
    • D. Liu, K. Song, J. R. Townshend, and P. Gong, "Using local transition probability models in markov random fields for forest change detection, " Remote Sensing of Environment, vol. 112, no. 5, pp. 2222-2231, 2008.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2222-2231
    • Liu, D.1    Song, K.2    Townshend, J.R.3    Gong, P.4
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 12
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification, " IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1349-1362, 2016.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 85019463183 scopus 로고    scopus 로고
    • Convolutional recurrent neural networks forhyperspectral data classification
    • H. Wu and S. Prasad, "Convolutional recurrent neural networks forhyperspectral data classification, " Remote Sensing, vol. 9, no. 3, p. 298, 2017.
    • (2017) Remote Sensing , vol.9 , Issue.3 , pp. 298
    • Wu, H.1    Prasad, S.2
  • 16
    • 85017192157 scopus 로고    scopus 로고
    • Deep learning classification of land cover and crop types using remote sensing data
    • N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, "Deep learning classification of land cover and crop types using remote sensing data, " IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 778-782, 2017.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , Issue.5 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 19
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks, " in European conference on computer vision. Springer, 2014, pp. 818-833.
    • (2014) European Conference on Computer Vision , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 22
    • 39349102180 scopus 로고    scopus 로고
    • Compact, dispersed, fragmented, extensive a comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information
    • A. Schneider and C. E. Woodcock, "Compact, dispersed, fragmented, extensive? a comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information, " Urban Studies, vol. 45, no. 3, pp. 659-692, 2008.
    • (2008) Urban Studies , vol.45 , Issue.3 , pp. 659-692
    • Schneider, A.1    Woodcock, C.E.2
  • 23
    • 84864044765 scopus 로고    scopus 로고
    • Monitoring land cover change in urban and peri-urban areas using dense time stacks of landsat satellite data and a data mining approach
    • A. Schneider, "Monitoring land cover change in urban and peri-urban areas using dense time stacks of landsat satellite data and a data mining approach, " Remote Sensing of Environment, vol. 124, pp. 689-704, 2012.
    • (2012) Remote Sensing of Environment , vol.124 , pp. 689-704
    • Schneider, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.