-
1
-
-
84920506757
-
Application of remote sensors in mapping rice area and forecasting its production: A review
-
M. K. Mosleh, Q. K. Hassan, and E. H. Chowdhury, "Application of remote sensors in mapping rice area and forecasting its production: A review, " Sensors, vol. 15, no. 1, pp. 769-791, 2015.
-
(2015)
Sensors
, vol.15
, Issue.1
, pp. 769-791
-
-
Mosleh, M.K.1
Hassan, Q.K.2
Chowdhury, E.H.3
-
2
-
-
84963614975
-
Discrimination of crop types with terrasar-x-derived information
-
R. Sonobe, H. Tani, X. Wang, N. Kobayashi, and H. Shimamura, "Discrimination of crop types with terrasar-x-derived information, " Physics and Chemistry of the Earth, Parts A/B/C, vol. 83, pp. 2-13, 2015.
-
(2015)
Physics and Chemistry of the Earth, Parts A/B/C
, vol.83
, pp. 2-13
-
-
Sonobe, R.1
Tani, H.2
Wang, X.3
Kobayashi, N.4
Shimamura, H.5
-
3
-
-
84904767350
-
Object-oriented crop mapping and monitoring using multitemporal polarimetric radarsat-2 data
-
X. Jiao, J. M. Kovacs, J. Shang, H. McNairn, D. Walters, B. Ma, and X. Geng, "Object-oriented crop mapping and monitoring using multitemporal polarimetric radarsat-2 data, " ISPRS Journal of Photogrammetry and Remote Sensing, vol. 96, pp. 38-46, 2014.
-
(2014)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.96
, pp. 38-46
-
-
Jiao, X.1
Kovacs, J.M.2
Shang, J.3
McNairn, H.4
Walters, D.5
Ma, B.6
Geng, X.7
-
4
-
-
33947591833
-
A survey of image classification methods and techniques for improving classification performance
-
D. Lu and Q. Weng, "A survey of image classification methods and techniques for improving classification performance, " International journal of Remote sensing, vol. 28, no. 5, pp. 823-870, 2007.
-
(2007)
International Journal of Remote Sensing
, vol.28
, Issue.5
, pp. 823-870
-
-
Lu, D.1
Weng, Q.2
-
6
-
-
84880397637
-
Hidden markov models for real-time estimation of corn progress stages using modis and meteorological data
-
Y. Shen, L. Wu, L. Di, G. Yu, H. Tang, G. Yu, and Y. Shao, "Hidden markov models for real-time estimation of corn progress stages using modis and meteorological data, " Remote Sensing, vol. 5, no. 4, pp. 1734-1753, 2013.
-
(2013)
Remote Sensing
, vol.5
, Issue.4
, pp. 1734-1753
-
-
Shen, Y.1
Wu, L.2
Di, L.3
Yu, G.4
Tang, H.5
Yu, G.6
Shao, Y.7
-
7
-
-
84937897682
-
A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data
-
S. Siachalou, G. Mallinis, and M. Tsakiri-Strati, "A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data, " Remote Sensing, vol. 7, no. 4, pp. 3633-3650, 2015.
-
(2015)
Remote Sensing
, vol.7
, Issue.4
, pp. 3633-3650
-
-
Siachalou, S.1
Mallinis, G.2
Tsakiri-Strati, M.3
-
8
-
-
41249083722
-
Using local transition probability models in markov random fields for forest change detection
-
D. Liu, K. Song, J. R. Townshend, and P. Gong, "Using local transition probability models in markov random fields for forest change detection, " Remote Sensing of Environment, vol. 112, no. 5, pp. 2222-2231, 2008.
-
(2008)
Remote Sensing of Environment
, vol.112
, Issue.5
, pp. 2222-2231
-
-
Liu, D.1
Song, K.2
Townshend, J.R.3
Gong, P.4
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
11
-
-
84879853859
-
Deep learning with hierarchical convolutional factor analysis
-
B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and L. Carin, "Deep learning with hierarchical convolutional factor analysis, " IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 8, pp. 1887-1901, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1887-1901
-
-
Chen, B.1
Polatkan, G.2
Sapiro, G.3
Blei, D.4
Dunson, D.5
Carin, L.6
-
12
-
-
84940417789
-
Unsupervised deep feature extraction for remote sensing image classification
-
A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification, " IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1349-1362, 2016.
-
(2016)
IEEE Transactions on Geoscience and Remote Sensing
, vol.54
, Issue.3
, pp. 1349-1362
-
-
Romero, A.1
Gatta, C.2
Camps-Valls, G.3
-
13
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
14
-
-
85019463183
-
Convolutional recurrent neural networks forhyperspectral data classification
-
H. Wu and S. Prasad, "Convolutional recurrent neural networks forhyperspectral data classification, " Remote Sensing, vol. 9, no. 3, p. 298, 2017.
-
(2017)
Remote Sensing
, vol.9
, Issue.3
, pp. 298
-
-
Wu, H.1
Prasad, S.2
-
15
-
-
85007439465
-
Deep learning approach for large scale land cover mapping based on remote sensing data fusion
-
N. Kussul, A. Shelestov, M. Lavreniuk, I. Butko, and S. Skakun, "Deep learning approach for large scale land cover mapping based on remote sensing data fusion, " in Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. IEEE, 2016, pp. 198-201.
-
(2016)
Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. IEEE
, pp. 198-201
-
-
Kussul, N.1
Shelestov, A.2
Lavreniuk, M.3
Butko, I.4
Skakun, S.5
-
16
-
-
85017192157
-
Deep learning classification of land cover and crop types using remote sensing data
-
N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, "Deep learning classification of land cover and crop types using remote sensing data, " IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 778-782, 2017.
-
(2017)
IEEE Geoscience and Remote Sensing Letters
, vol.14
, Issue.5
, pp. 778-782
-
-
Kussul, N.1
Lavreniuk, M.2
Skakun, S.3
Shelestov, A.4
-
17
-
-
84867720412
-
-
arXiv preprint arXiv:1207. 0580
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors, " arXiv preprint arXiv:1207. 0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
19
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks, " in European conference on computer vision. Springer, 2014, pp. 818-833.
-
(2014)
European Conference on Computer Vision
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
21
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions, " in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
22
-
-
39349102180
-
Compact, dispersed, fragmented, extensive a comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information
-
A. Schneider and C. E. Woodcock, "Compact, dispersed, fragmented, extensive? a comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information, " Urban Studies, vol. 45, no. 3, pp. 659-692, 2008.
-
(2008)
Urban Studies
, vol.45
, Issue.3
, pp. 659-692
-
-
Schneider, A.1
Woodcock, C.E.2
-
23
-
-
84864044765
-
Monitoring land cover change in urban and peri-urban areas using dense time stacks of landsat satellite data and a data mining approach
-
A. Schneider, "Monitoring land cover change in urban and peri-urban areas using dense time stacks of landsat satellite data and a data mining approach, " Remote Sensing of Environment, vol. 124, pp. 689-704, 2012.
-
(2012)
Remote Sensing of Environment
, vol.124
, pp. 689-704
-
-
Schneider, A.1
-
24
-
-
85019703990
-
Crop type mapping from a sequence of terrasar-x images with dynamic conditional random fields
-
B. Kenduiywo, D. Bargiel, and U. Soergel, "Crop type mapping from a sequence of terrasar-x images with dynamic conditional random fields, " ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 59-66, 2016.
-
(2016)
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
, pp. 59-66
-
-
Kenduiywo, B.1
Bargiel, D.2
Soergel, U.3
-
25
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python, " Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
|