메뉴 건너뛰기




Volumn 5, Issue 4, 2013, Pages 1734-1753

Hidden markov models for real-time estimation of corn progress stages using MODIS and meteorological data

Author keywords

Fractal dimension; Hidden markov model (HMM); Phenology; Time series

Indexed keywords

AGRICULTURAL ECONOMY; GROWING DEGREE DAYS; METEOROLOGICAL DATA; NATIONAL AGRICULTURAL STATISTICS SERVICES; NORMALIZED DIFFERENCE VEGETATION INDEX; PHENOLOGY; QUANTITATIVE COMPARISON; REAL-TIME ESTIMATION;

EID: 84880397637     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs5041734     Document Type: Article
Times cited : (31)

References (46)
  • 1
    • 84880440218 scopus 로고    scopus 로고
    • Available online (accessed on 18 November)
    • USDA-OCE: Weekly Weather and Crop Bulletin. Available online: http://www.usda.gov/oce/weather/pubs/Weekly/Wwcb/index.htm (accessed on 18 November 2012).
    • (2012) USDA-OCE: Weekly Weather and Crop Bulletin
  • 3
    • 56949107790 scopus 로고    scopus 로고
    • Noise reduction of NDVI time series: An empirical comparison of selected techniques
    • Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248-258.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 248-258
    • Hird, J.N.1    McDermid, G.J.2
  • 4
    • 84860508869 scopus 로고    scopus 로고
    • Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
    • Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400-417.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 400-417
    • Atkinson, P.M.1    Jeganathan, C.2    Dash, J.3    Atzberger, C.4
  • 5
    • 0034088199 scopus 로고    scopus 로고
    • The remote sensing approach in broad-scale phenological studies
    • Ricotta, C.; Avena, G.C. The remote sensing approach in broad-scale phenological studies. Appl. Veg. Sci. 2000, 3, 117-122.
    • (2000) Appl. Veg. Sci. , vol.3 , pp. 117-122
    • Ricotta, C.1    Avena, G.C.2
  • 6
    • 80051712359 scopus 로고    scopus 로고
    • Climatic forcing and phytoplankton phenology over the subarctic north pacific from 1998 to 2006, as observed from ocean color data
    • doi:10.1029/2011GL048299
    • Sasaoka, K.; Chiba, S.; Saino, T. Climatic forcing and phytoplankton phenology over the subarctic north pacific from 1998 to 2006, as observed from ocean color data. Geophys. Res. Lett. 2011, doi:10.1029/2011GL048299.
    • (2011) Geophys. Res. Lett.
    • Sasaoka, K.1    Chiba, S.2    Saino, T.3
  • 8
    • 0024483115 scopus 로고
    • WOFOST: A simulation model of crop production
    • Diepen, C.A.; Wolf, J.; van Keulen, H. WOFOST: A simulation model of crop production. Soil Use Manage. 1989, 5, 16-24.
    • (1989) Soil Use Manage , vol.5 , pp. 16-24
    • Diepen, C.A.1    Wolf, J.2    Van Keulen, H.3
  • 9
    • 0037232380 scopus 로고    scopus 로고
    • Cropsyst, a cropping systems simulation model
    • Stöckle, C.O.; Donatelli, M.; Nelson, R. Cropsyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289-307.
    • (2003) Eur. J. Agron. , vol.18 , pp. 289-307
    • Stöckle, C.O.1    Donatelli, M.2    Nelson, R.3
  • 11
    • 38249013634 scopus 로고
    • Climatic impacts on dryland winter wheat by daily soil water and crop stress simulations
    • Saxton, K.E.; Porterand, M.A.; McMahon, T.A. Climatic impacts on dryland winter wheat by daily soil water and crop stress simulations. Agr. For. Meteorol. 1992, 58, 177-192.
    • (1992) Agr. For. Meteorol. , vol.58 , pp. 177-192
    • Saxton, K.E.1    Porterand, M.A.2    McMahon, T.A.3
  • 13
    • 84920050329 scopus 로고    scopus 로고
    • Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology
    • Hudson, I.L., Keatley, M.R., Eds.; Springer-Verlag: New York, NY, USA
    • De Beurs, K.M.; Henebry, G.M. Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. In Phenological Research: Methods for Environmental and Climate Change Analysis; Hudson, I.L., Keatley, M.R., Eds.; Springer-Verlag: New York, NY, USA, 2010.
    • (2010) Phenological Research: Methods for Environmental and Climate Change Analysis
    • De Beurs, K.M.1    Henebry, G.M.2
  • 14
    • 84880407238 scopus 로고    scopus 로고
    • Comparison of AVHRR, MODIS and VEGETATION for Land Cover Mapping and Drought Monitoring at 1 km Spatial Resolution
    • Cranfield University, Bedford, UK
    • Toukiloglou, P. Comparison of AVHRR, MODIS and VEGETATION for Land Cover Mapping and Drought Monitoring at 1 km Spatial Resolution. Ph.D. Thesis, Cranfield University, Bedford, UK, 2007.
    • (2007) Ph.D. Thesis
    • Toukiloglou, P.1
  • 16
    • 54849411536 scopus 로고    scopus 로고
    • Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China
    • Ren, J.; Chen, Z.; Zhou, Q. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 403-413.
    • (2008) Int. J. Appl. Earth Obs. Geoinf. , vol.10 , pp. 403-413
    • Ren, J.1    Chen, Z.2    Zhou, Q.3
  • 17
    • 84874788283 scopus 로고    scopus 로고
    • Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs
    • Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949-981.
    • (2013) Remote Sens. , vol.5 , pp. 949-981
    • Atzberger, C.1
  • 19
    • 84879901499 scopus 로고    scopus 로고
    • Correlation between corn progress stages and fractal dimension from MODIS-NDVI time series
    • Shen, Y.; Di, L.; Yu, G.; Wu, L. Correlation between corn progress stages and fractal dimension from MODIS-NDVI time series. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1-5.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , pp. 1-5
    • Shen, Y.1    Di, L.2    Yu, G.3    Wu, L.4
  • 20
    • 84870648861 scopus 로고    scopus 로고
    • Available online, (accessed on 18 November)
    • USDA-NASS: National Crop Progress Terms and Definitions. Available online: http://www.nass.usda.gov/Publications/NationalCropProgress/TermsandDefinitions/index.asp (accessed on 18 November 2012).
    • (2012) USDA-NASS: National Crop Progress Terms and Definitions
  • 21
    • 84858705026 scopus 로고    scopus 로고
    • An HMM approach for optimal investment of an insurer
    • Elliott, R.J.; Siu, T.K. An HMM approach for optimal investment of an insurer. Int. J. Robust Nonlinear Contr. 2012, 22, 778-807.
    • (2012) Int. J. Robust Nonlinear Contr. , vol.22 , pp. 778-807
    • Elliott, R.J.1    Siu, T.K.2
  • 22
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257-286.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 23
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology: Applications to protein modeling
    • Krogh, A.; Brown, M.; Mian, I.S.; Sjölander, K.; Haussler, D. Hidden Markov models in computational biology: Applications to protein modeling. J. Mol. Biol. 1994, 235, 1501-1531.
    • (1994) J. Mol. Biol. , vol.235 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.S.3    Sjölander, K.4    Haussler, D.5
  • 26
    • 0028468324 scopus 로고
    • Hidden Markov models applied to vegetation dynamics analysis using satellite remote sensing
    • Viovy, N.; Saint, G. Hidden Markov models applied to vegetation dynamics analysis using satellite remote sensing. IEEE Trans. Geosci. Remote Sens. 1994, 32, 906-917.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , pp. 906-917
    • Viovy, N.1    Saint, G.2
  • 28
    • 0022927215 scopus 로고
    • Characteristics of maximum-value composite images from temporal AVHRR data
    • Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417-1434.
    • (1986) Int. J. Remote Sens. , vol.7 , pp. 1417-1434
    • Holben, B.N.1
  • 29
    • 79957591587 scopus 로고    scopus 로고
    • Technical Report; University of Missouri: Columbia, MO, USA
    • Wiebold, B. Growing Degree Days and Corn Maturity; Technical Report; University of Missouri: Columbia, MO, USA, 2002.
    • (2002) Growing Degree Days and Corn Maturity
    • Wiebold, B.1
  • 30
    • 0000148490 scopus 로고
    • Precipitation averages for large areas
    • Thiessen, A.H. Precipitation averages for large areas. Mon. Wea. Rev. 1911, 39, 1082-1089.
    • (1911) Mon. Wea. Rev. , vol.39 , pp. 1082-1089
    • Thiessen, A.H.1
  • 32
    • 0031452646 scopus 로고    scopus 로고
    • Growing degree-days: One equation, two interpretations
    • McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agr. Forest Meteorol. 1997, 87, 291-300.
    • (1997) Agr. Forest Meteorol. , vol.87 , pp. 291-300
    • McMaster, G.S.1    Wilhelm, W.W.2
  • 33
    • 84880406275 scopus 로고    scopus 로고
    • Available online, (accessed on 18 November 2012)
    • Jaakkola, T.S. Machine Learning, Lecture Notes 19: Hidden Markov Models (HMMs); 2006. Available online: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/lec19.pdf (accessed on 18 November 2012).
    • (2006) Machine Learning, Lecture Notes 19: Hidden Markov Models (HMMs)
    • Jaakkola, T.S.1
  • 35
    • 24744463144 scopus 로고    scopus 로고
    • Model-Based Clustering with Hidden Markov Models and its Application to Financial Time-Series Data
    • Schader, M., Gaul, W., Vichi, M., Eds.; Springer: New York, NY, USA
    • Knab, B.; Schliep, A.; Steckemetz, B.; Wichern, B. Model-Based Clustering with Hidden Markov Models and its Application to Financial Time-Series Data. In Between Data Science and Applied Data Analysis; Schader, M., Gaul, W., Vichi, M., Eds.; Springer: New York, NY, USA, 2003; pp. 561-569.
    • (2003) Between Data Science and Applied Data Analysis , pp. 561-569
    • Knab, B.1    Schliep, A.2    Steckemetz, B.3    Wichern, B.4
  • 36
    • 79958106048 scopus 로고    scopus 로고
    • Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended Hidden Markov Models
    • Seifert, M.; Strickert, M.; Schliep, A.; Grosse, I. Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended Hidden Markov Models. Bioinformatics 2011, 27, 1645-1652.
    • (2011) Bioinformatics , vol.27 , pp. 1645-1652
    • Seifert, M.1    Strickert, M.2    Schliep, A.3    Grosse, I.4
  • 37
    • 79955632675 scopus 로고    scopus 로고
    • Crop management and phenology trends in the U.S. corn belt: Impacts on yields, evapotranspiration and energy balance
    • Sacks, W.J.; Kucharik, C.J. Crop management and phenology trends in the U.S. corn belt: Impacts on yields, evapotranspiration and energy balance. Agr. Forest Meteorol. 2011, 151, 882-894.
    • (2011) Agr. Forest Meteorol. , vol.151 , pp. 882-894
    • Sacks, W.J.1    Kucharik, C.J.2
  • 38
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B. 1977, 39, 1-38.
    • (1977) J. Roy. Stat. Soc. B. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 41
    • 79957630538 scopus 로고    scopus 로고
    • Detecting spatiotemporal changes of corn developmental stages in the U.S. corn belt using MODIS WDRVI data
    • Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A. Detecting spatiotemporal changes of corn developmental stages in the U.S. corn belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1926-1936.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 1926-1936
    • Sakamoto, T.1    Wardlow, B.D.2    Gitelson, A.A.3
  • 42
    • 80055082298 scopus 로고    scopus 로고
    • High-order hidden Markov model and application to continuous mandarin digit recognition
    • Lee, L. High-order hidden Markov model and application to continuous mandarin digit recognition. J. Inf. Sci. Eng. 2011, 27, 1919-1930.
    • (2011) J. Inf. Sci. Eng. , vol.27 , pp. 1919-1930
    • Lee, L.1
  • 43
    • 0030779362 scopus 로고    scopus 로고
    • Automatic word recognition based on second-order hidden Markov models
    • Mari, J.F.; Haton, J.P.; Kriouile, A. Automatic word recognition based on second-order hidden Markov models. IEEE Trans. Speech Audio Proc. 1997, 5, 22-25.
    • (1997) IEEE Trans. Speech Audio Proc. , vol.5 , pp. 22-25
    • Mari, J.F.1    Haton, J.P.2    Kriouile, A.3
  • 44
    • 84869397620 scopus 로고    scopus 로고
    • MeDIP-HMM: Genome-wide identification of distinct DNA methylation states from high-density tiling arrays
    • doi:10.1093/bioinformatics/bts562
    • Seifert, M.; Cortijo, S.; Colomé-Tatché, M.; Johannes, Frank; Roudier, F.; Colot, V. MeDIP-HMM: Genome-wide identification of distinct DNA methylation states from high-density tiling arrays. Bioinformatics. 2012, doi:10.1093/bioinformatics/bts562.
    • (2012) Bioinformatics
    • Seifert, M.1    Cortijo, S.2    Colomé-Tatché, M.3    Johannes, F.4    Roudier, F.5    Colot, V.6
  • 45
    • 84857482807 scopus 로고    scopus 로고
    • Parsimonious higher-order hidden Markov models for improved array-CGH analysis with applications to Arabidopsis thaliana
    • Seifert, M.; Gohr, A.; Strickert, M.; Grosse, I. Parsimonious higher-order hidden Markov models for improved array-CGH analysis with applications to Arabidopsis thaliana. PLoS Comp. Biol. 2012, 8, 1-15.
    • (2012) PLoS Comp. Biol. , vol.8 , pp. 1-15
    • Seifert, M.1    Gohr, A.2    Strickert, M.3    Grosse, I.4
  • 46
    • 4544275233 scopus 로고    scopus 로고
    • Unsupervised Image Segmentation Based on High-Order Hidden MARKOV Chains
    • Speech, and Signal Processing (ICASSP), Marseille, France, 17-21 May
    • Derrode, S.; Carincotte, C.; Bourennane, S. Unsupervised Image Segmentation Based on High-Order Hidden MARKOV Chains. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Marseille, France, 17-21 May 2004; pp. 769-772.
    • (2004) Proceedings of IEEE International Conference on Acoustics , pp. 769-772
    • Derrode, S.1    Carincotte, C.2    Bourennane, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.