메뉴 건너뛰기




Volumn 22, Issue 3, 2018, Pages 328-335

Detection of tuberculosis patterns in digital photographs of chest X-ray images using Deep Learning: Feasibility study

Author keywords

Chest radiograph; CXR; Deep learning; TB; Teleradiology

Indexed keywords

ADULT; AREA UNDER THE CURVE; ARTICLE; CLASSIFICATION; CONTROLLED STUDY; DEEP LEARNING; DIAGNOSTIC TEST ACCURACY STUDY; FEASIBILITY STUDY; FEMALE; HUMAN; HUMAN IMMUNODEFICIENCY VIRUS INFECTION; IMAGE ANALYSIS; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MEDICAL PHOTOGRAPHY; OBSERVATIONAL STUDY; PLEURA EFFUSION; PREDICTIVE VALUE; PRIORITY JOURNAL; PROSPECTIVE STUDY; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; SOFTWARE; THORAX RADIOGRAPHY; TUBERCULOSIS; UGANDA; DEVICES; DIAGNOSTIC IMAGING; LUNG TUBERCULOSIS; MIXED INFECTION; PROCEDURES; TELERADIOLOGY;

EID: 85040508258     PISSN: 10273719     EISSN: 18157920     Source Type: Journal    
DOI: 10.5588/ijtld.17.0520     Document Type: Article
Times cited : (51)

References (28)
  • 1
    • 79953728493 scopus 로고    scopus 로고
    • Natural history of tuberculosis: Duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: A systematic review
    • Tiemersma EW, van derWerf MJ, Borgdorff M W, Williams B G, Nagelkerke N J D. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: A systematic review. PLOS ONE 2011; 6: E17601.
    • (2011) PLOS ONE , vol.6 , pp. e17601
    • Tiemersma, E.W.1    Van Der Werf, M.J.2    Borgdorff, M.W.3    Williams, B.G.4    Nagelkerke, N.J.D.5
  • 3
    • 84907176514 scopus 로고    scopus 로고
    • Role of pre-Xpertw screening using chest X-ray in early diagnosis of smearnegative pulmonary tuberculosis
    • Somashekar N, Chadha V K, Praseeja P, et al. Role of pre-Xpertw screening using chest X-ray in early diagnosis of smearnegative pulmonary tuberculosis. Int J Tuberc Lung Dis 2014; 18: 1243-1244.
    • (2014) Int J Tuberc Lung Dis , vol.18 , pp. 1243-1244
    • Somashekar, N.1    Chadha, V.K.2    Praseeja, P.3
  • 5
    • 84894198937 scopus 로고    scopus 로고
    • World Health Organization. WHO/HTM/TB/2016.13. Geneva, Switzerland: WHO
    • World Health Organization. Global tuberculosis report, 2016. WHO/HTM/TB/2016.13. Geneva, Switzerland: WHO, 2016.
    • (2016) Global Tuberculosis Report, 2016
  • 7
    • 10744229953 scopus 로고    scopus 로고
    • Diagnostic accuracy of chest X-rays acquired using a digital camera for low-cost teleradiology
    • Szot A, Jacobson F L, Munn S, et al. Diagnostic accuracy of chest X-rays acquired using a digital camera for low-cost teleradiology. Int J Med Inform 2004; 73: 65-73.
    • (2004) Int J Med Inform , vol.73 , pp. 65-73
    • Szot, A.1    Jacobson, F.L.2    Munn, S.3
  • 8
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115-118.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 9
    • 84872543023 scopus 로고    scopus 로고
    • Efficient BACKPROP
    • Berlin, Neural networks: Tricks of the trade Heidelberg, Germany: Springer Berlin Heidelberg
    • LeCun YA, Bottou L, Orr G B, Muller K-R. Efficient BackProp. In: Neural networks: Tricks of the trade. Lecture Notes in Computer Science. Vol 7700. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 2012: pp 9-48.
    • (2012) Neural networks: Tricks of the trade , pp. 9-48
    • LeCun, Y.A.1    Bottou, L.2    Orr, G.B.3    Muller, K.-R.4
  • 10
    • 34848816179 scopus 로고    scopus 로고
    • To recognize shapes, first learn to generate images
    • Hinton G E. To recognize shapes, first learn to generate images. Prog Brain Res 2007; 165: 535-547.
    • (2007) Prog Brain Res , vol.165 , pp. 535-547
    • Hinton, G.E.1
  • 11
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep architectures for AI
    • Jordan M, ed. Delft, The Netherlands: Now Publishers Inc
    • Bengio Y. Learning Deep architectures for AI. In: Jordan M, ed. Foundations and trendsw in machine learning. Delft, The Netherlands: Now Publishers Inc, 2009.
    • (2009) Foundations and Trendsw in Machine Learning
    • Bengio, Y.1
  • 12
    • 85013092765 scopus 로고    scopus 로고
    • Deep Learning in mammography: Diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer
    • Becker A S, Marcon M, Ghafoor S, Wurnig M C, Frauenfelder T, Boss A. Deep Learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 2017; 52: 434-440.
    • (2017) Invest Radiol , vol.52 , pp. 434-440
    • Becker, A.S.1    Marcon, M.2    Ghafoor, S.3    Wurnig, M.C.4    Frauenfelder, T.5    Boss, A.6
  • 14
    • 84873397817 scopus 로고    scopus 로고
    • Clinical and radiographic factors do not accurately diagnose smear-negative tuberculosis in HIV-infected inpatients in Uganda: A crosssectional study
    • Davis J L, Worodria W, Kisembo H, et al. Clinical and radiographic factors do not accurately diagnose smear-negative tuberculosis in HIV-infected inpatients in Uganda: A crosssectional study. PLOS ONE 2010; 5: E9859.
    • (2010) PLOS ONE , vol.5 , pp. e9859
    • Davis, J.L.1    Worodria, W.2    Kisembo, H.3
  • 15
    • 85013483709 scopus 로고    scopus 로고
    • Evaluation of a chest radiograph reading and recording system for tuberculosis in a HIV-positive cohort
    • 519.e1-519.e9
    • Kosack C S, Spijker S, Halton J, et al. Evaluation of a chest radiograph reading and recording system for tuberculosis in a HIV-positive cohort. Clin Radiol 2017; 72: 519.e1-519.e9.
    • (2017) Clin Radiol , vol.72
    • Kosack, C.S.1    Spijker, S.2    Halton, J.3
  • 16
    • 84966709085 scopus 로고    scopus 로고
    • Digital platform for improving non-radiologists' and radiologists' interpretation of chest radiographs for suspected tuberculosis-A method for supporting task-shifting in developing countries
    • Semakula-Katende N S, Andronikou S, Lucas S. Digital platform for improving non-radiologists' and radiologists' interpretation of chest radiographs for suspected tuberculosis-A method for supporting task-shifting in developing countries. Pediatr Radiol 2016; 46: 1384-1391.
    • (2016) Pediatr Radiol , vol.46 , pp. 1384-1391
    • Semakula-Katende, N.S.1    Andronikou, S.2    Lucas, S.3
  • 17
    • 84903440784 scopus 로고    scopus 로고
    • Teaching chest X-ray reading for child tuberculosis suspects
    • Seddon J A, Padayachee T, Plessis du A-M, et al. Teaching chest X-ray reading for child tuberculosis suspects. Int J Tuberc Lung Dis 2014; 18: 763-769.
    • (2014) Int J Tuberc Lung Dis , vol.18 , pp. 763-769
    • Seddon, J.A.1    Padayachee, T.2    Plessis, D.A.-M.3
  • 18
  • 19
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects. Science 2015; 349: 255-260.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 21
    • 85025112337 scopus 로고    scopus 로고
    • Deep Learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks
    • Lakhani P, Sundaram B. Deep Learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017; 284: 574- 582.
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2
  • 23
    • 84997365125 scopus 로고    scopus 로고
    • Screening for pulmonary tuberculosis in a Tanzanian prison and computeraided interpretation of chest X-rays
    • Steiner A, Mangu C, vandenHombergh J, et al. Screening for pulmonary tuberculosis in a Tanzanian prison and computeraided interpretation of chest X-rays. Public Health Action 2015; 5: 249-254.
    • (2015) Public Health Action , vol.5 , pp. 249-254
    • Steiner, A.1    Mangu, C.2    Van Den Hombergh, J.3
  • 24
    • 84899424692 scopus 로고    scopus 로고
    • The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia
    • Muyoyeta M, Maduskar P, Moyo M, et al. The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia. PLOS ONE 2014; 9: E93757.
    • (2014) PLOS ONE , vol.9 , pp. e93757
    • Muyoyeta, M.1    Maduskar, P.2    Moyo, M.3
  • 25
    • 84888115833 scopus 로고    scopus 로고
    • Detection of tuberculosis using digital chest radiography: Automated reading vs. Interpretation by clinical officers
    • Maduskar P, Muyoyeta M, Ayles H, Hogeweg L, Peters-Bax L, van Ginneken B. Detection of tuberculosis using digital chest radiography: Automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis 2013; 17: 1613-1620.
    • (2013) Int J Tuberc Lung Dis , vol.17 , pp. 1613-1620
    • Maduskar, P.1    Muyoyeta, M.2    Ayles, H.3    Hogeweg, L.4    Peters-Bax, L.5    Van Ginneken, B.6
  • 26
    • 84946489610 scopus 로고    scopus 로고
    • Interpretation of bedside chest X-rays in the ICU: Is the radiologist still needed?
    • Martini K, Ganter C, Maggiorini M, et al. Interpretation of bedside chest X-rays in the ICU: is the radiologist still needed? J Clin Imaging 2015; 39: 1018-1023.
    • (2015) J Clin Imaging , vol.39 , pp. 1018-1023
    • Martini, K.1    Ganter, C.2    Maggiorini, M.3
  • 28
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in neural networks: An overview
    • Schmidhuber J. Deep Learning in neural networks: An overview. Neural Networks 2015; 61: 85-117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.