-
1
-
-
79953728493
-
Natural history of tuberculosis: Duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: A systematic review
-
Tiemersma EW, van derWerf MJ, Borgdorff M W, Williams B G, Nagelkerke N J D. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: A systematic review. PLOS ONE 2011; 6: E17601.
-
(2011)
PLOS ONE
, vol.6
, pp. e17601
-
-
Tiemersma, E.W.1
Van Der Werf, M.J.2
Borgdorff, M.W.3
Williams, B.G.4
Nagelkerke, N.J.D.5
-
3
-
-
84907176514
-
Role of pre-Xpertw screening using chest X-ray in early diagnosis of smearnegative pulmonary tuberculosis
-
Somashekar N, Chadha V K, Praseeja P, et al. Role of pre-Xpertw screening using chest X-ray in early diagnosis of smearnegative pulmonary tuberculosis. Int J Tuberc Lung Dis 2014; 18: 1243-1244.
-
(2014)
Int J Tuberc Lung Dis
, vol.18
, pp. 1243-1244
-
-
Somashekar, N.1
Chadha, V.K.2
Praseeja, P.3
-
4
-
-
85054634213
-
-
Boca Raton, FL, USA: CRC Press Book
-
Davies P, Gordon S B, Davies G. Clinical tuberculosis. Boca Raton, FL, USA: CRC Press Book, 2014.
-
(2014)
Clinical Tuberculosis
-
-
Davies, P.1
Gordon, S.B.2
Davies, G.3
-
5
-
-
84894198937
-
-
World Health Organization. WHO/HTM/TB/2016.13. Geneva, Switzerland: WHO
-
World Health Organization. Global tuberculosis report, 2016. WHO/HTM/TB/2016.13. Geneva, Switzerland: WHO, 2016.
-
(2016)
Global Tuberculosis Report, 2016
-
-
-
6
-
-
34948886211
-
A quantitative theory of immediate visual recognition
-
Cisek P, Drew T, Kalaska J, eds. Amsterdam, The Netherlands: Elsevier
-
Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T. A quantitative theory of immediate visual recognition. In: Cisek P, Drew T, Kalaska J, eds. Computational neuroscience: Theoretical insights into brain function. Progress in Brain Research. Vol 165. Amsterdam, The Netherlands: Elsevier, 2007: pp 33-56.
-
(2007)
Computational Neuroscience: Theoretical Insights into Brain Function, Progress in Brain Research
, vol.165
, pp. 33-56
-
-
Serre, T.1
Kreiman, G.2
Kouh, M.3
Cadieu, C.4
Knoblich, U.5
Poggio, T.6
-
7
-
-
10744229953
-
Diagnostic accuracy of chest X-rays acquired using a digital camera for low-cost teleradiology
-
Szot A, Jacobson F L, Munn S, et al. Diagnostic accuracy of chest X-rays acquired using a digital camera for low-cost teleradiology. Int J Med Inform 2004; 73: 65-73.
-
(2004)
Int J Med Inform
, vol.73
, pp. 65-73
-
-
Szot, A.1
Jacobson, F.L.2
Munn, S.3
-
8
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115-118.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
9
-
-
84872543023
-
Efficient BACKPROP
-
Berlin, Neural networks: Tricks of the trade Heidelberg, Germany: Springer Berlin Heidelberg
-
LeCun YA, Bottou L, Orr G B, Muller K-R. Efficient BackProp. In: Neural networks: Tricks of the trade. Lecture Notes in Computer Science. Vol 7700. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 2012: pp 9-48.
-
(2012)
Neural networks: Tricks of the trade
, pp. 9-48
-
-
LeCun, Y.A.1
Bottou, L.2
Orr, G.B.3
Muller, K.-R.4
-
10
-
-
34848816179
-
To recognize shapes, first learn to generate images
-
Hinton G E. To recognize shapes, first learn to generate images. Prog Brain Res 2007; 165: 535-547.
-
(2007)
Prog Brain Res
, vol.165
, pp. 535-547
-
-
Hinton, G.E.1
-
11
-
-
69349090197
-
Learning Deep architectures for AI
-
Jordan M, ed. Delft, The Netherlands: Now Publishers Inc
-
Bengio Y. Learning Deep architectures for AI. In: Jordan M, ed. Foundations and trendsw in machine learning. Delft, The Netherlands: Now Publishers Inc, 2009.
-
(2009)
Foundations and Trendsw in Machine Learning
-
-
Bengio, Y.1
-
12
-
-
85013092765
-
Deep Learning in mammography: Diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer
-
Becker A S, Marcon M, Ghafoor S, Wurnig M C, Frauenfelder T, Boss A. Deep Learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 2017; 52: 434-440.
-
(2017)
Invest Radiol
, vol.52
, pp. 434-440
-
-
Becker, A.S.1
Marcon, M.2
Ghafoor, S.3
Wurnig, M.C.4
Frauenfelder, T.5
Boss, A.6
-
14
-
-
84873397817
-
Clinical and radiographic factors do not accurately diagnose smear-negative tuberculosis in HIV-infected inpatients in Uganda: A crosssectional study
-
Davis J L, Worodria W, Kisembo H, et al. Clinical and radiographic factors do not accurately diagnose smear-negative tuberculosis in HIV-infected inpatients in Uganda: A crosssectional study. PLOS ONE 2010; 5: E9859.
-
(2010)
PLOS ONE
, vol.5
, pp. e9859
-
-
Davis, J.L.1
Worodria, W.2
Kisembo, H.3
-
15
-
-
85013483709
-
Evaluation of a chest radiograph reading and recording system for tuberculosis in a HIV-positive cohort
-
519.e1-519.e9
-
Kosack C S, Spijker S, Halton J, et al. Evaluation of a chest radiograph reading and recording system for tuberculosis in a HIV-positive cohort. Clin Radiol 2017; 72: 519.e1-519.e9.
-
(2017)
Clin Radiol
, vol.72
-
-
Kosack, C.S.1
Spijker, S.2
Halton, J.3
-
16
-
-
84966709085
-
Digital platform for improving non-radiologists' and radiologists' interpretation of chest radiographs for suspected tuberculosis-A method for supporting task-shifting in developing countries
-
Semakula-Katende N S, Andronikou S, Lucas S. Digital platform for improving non-radiologists' and radiologists' interpretation of chest radiographs for suspected tuberculosis-A method for supporting task-shifting in developing countries. Pediatr Radiol 2016; 46: 1384-1391.
-
(2016)
Pediatr Radiol
, vol.46
, pp. 1384-1391
-
-
Semakula-Katende, N.S.1
Andronikou, S.2
Lucas, S.3
-
19
-
-
84937801713
-
Machine learning: Trends, perspectives, and prospects
-
Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects. Science 2015; 349: 255-260.
-
(2015)
Science
, vol.349
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
20
-
-
84986247435
-
Learning deep features for discriminative localization
-
27-30 June, Las Vegas, NV, USA
-
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016, Las Vegas, NV, USA: pp 2921- 2929.
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 2921-2929
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
21
-
-
85025112337
-
Deep Learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks
-
Lakhani P, Sundaram B. Deep Learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017; 284: 574- 582.
-
(2017)
Radiology
, vol.284
, pp. 574-582
-
-
Lakhani, P.1
Sundaram, B.2
-
22
-
-
85029815117
-
High-resolution breast cancer screening with multi-view deep convolutional neural networks
-
6 November
-
Geras K J, Wolfson S, Kim S G, Moy L, Cho K. High-resolution breast cancer screening with multi-view deep convolutional neural networks. Computer Vision and Pattern Recognition, 6 November 2017.
-
(2017)
Computer Vision and Pattern Recognition
-
-
Geras, K.J.1
Wolfson, S.2
Kim, S.G.3
Moy, L.4
Cho, K.5
-
23
-
-
84997365125
-
Screening for pulmonary tuberculosis in a Tanzanian prison and computeraided interpretation of chest X-rays
-
Steiner A, Mangu C, vandenHombergh J, et al. Screening for pulmonary tuberculosis in a Tanzanian prison and computeraided interpretation of chest X-rays. Public Health Action 2015; 5: 249-254.
-
(2015)
Public Health Action
, vol.5
, pp. 249-254
-
-
Steiner, A.1
Mangu, C.2
Van Den Hombergh, J.3
-
24
-
-
84899424692
-
The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia
-
Muyoyeta M, Maduskar P, Moyo M, et al. The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia. PLOS ONE 2014; 9: E93757.
-
(2014)
PLOS ONE
, vol.9
, pp. e93757
-
-
Muyoyeta, M.1
Maduskar, P.2
Moyo, M.3
-
25
-
-
84888115833
-
Detection of tuberculosis using digital chest radiography: Automated reading vs. Interpretation by clinical officers
-
Maduskar P, Muyoyeta M, Ayles H, Hogeweg L, Peters-Bax L, van Ginneken B. Detection of tuberculosis using digital chest radiography: Automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis 2013; 17: 1613-1620.
-
(2013)
Int J Tuberc Lung Dis
, vol.17
, pp. 1613-1620
-
-
Maduskar, P.1
Muyoyeta, M.2
Ayles, H.3
Hogeweg, L.4
Peters-Bax, L.5
Van Ginneken, B.6
-
26
-
-
84946489610
-
Interpretation of bedside chest X-rays in the ICU: Is the radiologist still needed?
-
Martini K, Ganter C, Maggiorini M, et al. Interpretation of bedside chest X-rays in the ICU: is the radiologist still needed? J Clin Imaging 2015; 39: 1018-1023.
-
(2015)
J Clin Imaging
, vol.39
, pp. 1018-1023
-
-
Martini, K.1
Ganter, C.2
Maggiorini, M.3
-
27
-
-
0003679522
-
-
Philadelphia, PA, USA: W B Saunders
-
Fraser R S, Muller N L, Colman N, Pare P D. Fraser and Paŕe's diagnosis of diseases of the chest. Vols 1-4. Philadelphia, PA, USA: W B Saunders, 1999.
-
(1999)
Fraser and Paŕe's Diagnosis of Diseases of the Chest
, vol.1-4
-
-
Fraser, R.S.1
Muller, N.L.2
Colman, N.3
Pare, P.D.4
-
28
-
-
84910651844
-
Deep Learning in neural networks: An overview
-
Schmidhuber J. Deep Learning in neural networks: An overview. Neural Networks 2015; 61: 85-117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
|