메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 2007-2016

Matrix tri-factorization with manifold regularizations for zero-shot learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FACTORIZATION; KNOWLEDGE MANAGEMENT; PATTERN RECOGNITION; SEMANTICS;

EID: 85038255436     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.217     Document Type: Conference Paper
Times cited : (143)

References (44)
  • 1
    • 84887338331 scopus 로고    scopus 로고
    • Label-embedding for attribute-based classification
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for attribute-based classification. In CVPR, pages 819-826, 2013.
    • (2013) CVPR , pp. 819-826
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • Z. Akata, S. E. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, pages 2927-2936, 2015.
    • (2015) CVPR , pp. 2927-2936
    • Akata, Z.1    Reed, S.E.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 78751697032 scopus 로고    scopus 로고
    • Locality preserving nonnegative matrix factorization
    • D. Cai, X. He, X. Wang, H. Bao, and J. Han. Locality preserving nonnegative matrix factorization. In IJCAI, pages 1010-1015, 2009.
    • (2009) IJCAI , pp. 1010-1015
    • Cai, D.1    He, X.2    Wang, X.3    Bao, H.4    Han, J.5
  • 6
    • 84986274021 scopus 로고    scopus 로고
    • Synthesized classifiers for zero-shot learning
    • S. Changpinyo, W. Chao, B. Gong, and F. Sha. Synthesized classifiers for zero-shot learning. In CVPR, pages 580-587, 2016.
    • (2016) CVPR , pp. 580-587
    • Changpinyo, S.1    Chao, W.2    Gong, B.3    Sha, F.4
  • 7
    • 84990852341 scopus 로고    scopus 로고
    • An empirical study and analysis of generalized zero-shot learning for object recognition in the wild
    • W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In ECCV, pages 52-68, 2016.
    • (2016) ECCV , pp. 52-68
    • Chao, W.-L.1    Changpinyo, S.2    Gong, B.3    Sha, F.4
  • 8
    • 78149302207 scopus 로고    scopus 로고
    • What does classifying more than 10,000 image categories tell us?
    • J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV, pages 71-84, 2010.
    • (2010) ECCV , pp. 71-84
    • Deng, J.1    Berg, A.C.2    Li, K.3    Fei-Fei, L.4
  • 9
    • 84887325349 scopus 로고    scopus 로고
    • Fine-grained crowdsourcing for fine-grained recognition
    • J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recognition. In CVPR, pages 580-587, 2013.
    • (2013) CVPR , pp. 580-587
    • Deng, J.1    Krause, J.2    Fei-Fei, L.3
  • 10
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In KDD, pages 126-135, 2006.
    • (2006) KDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 11
    • 70450207704 scopus 로고    scopus 로고
    • Describing objects by their attributes
    • A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth. Describing objects by their attributes. In CVPR, pages 1778-1785, 2009.
    • (2009) CVPR , pp. 1778-1785
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3    Forsyth, D.A.4
  • 13
    • 84941001216 scopus 로고    scopus 로고
    • Transductive multi-view zero-shot learning
    • Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-view zero-shot learning. TPAMI, 37(11):2332-2345, 2015.
    • (2015) TPAMI , vol.37 , Issue.11 , pp. 2332-2345
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Gong, S.4
  • 14
    • 84940993365 scopus 로고    scopus 로고
    • Zero-shot object recognition by semantic manifold distance
    • Z. Fu, T. A. Xiang, E. Kodirov, and S. Gong. Zero-shot object recognition by semantic manifold distance. In CVPR, pages 2635-2644, 2015.
    • (2015) CVPR , pp. 2635-2644
    • Fu, Z.1    Xiang, T.A.2    Kodirov, E.3    Gong, S.4
  • 15
    • 84866713663 scopus 로고    scopus 로고
    • Online incremental attribute-based zero-shot learning
    • P. Kankuekul, A. Kawewong, S. Tangruamsub, and O. Hasegawa. Online incremental attribute-based zero-shot learning. In CVPR, pages 3657-3664, 2012.
    • (2012) CVPR , pp. 3657-3664
    • Kankuekul, P.1    Kawewong, A.2    Tangruamsub, S.3    Hasegawa, O.4
  • 16
    • 84973901436 scopus 로고    scopus 로고
    • Unsupervised domain adaptation for zero-shot learning
    • E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised domain adaptation for zero-shot learning. In ICCV, pages 2452-2460, 2015.
    • (2015) ICCV , pp. 2452-2460
    • Kodirov, E.1    Xiang, T.2    Fu, Z.3    Gong, S.4
  • 17
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, pages 951-958, 2009.
    • (2009) CVPR , pp. 951-958
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 18
    • 84894522762 scopus 로고    scopus 로고
    • Attribute-based classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. TPAMI, 36(3):453-465, 2014.
    • (2014) TPAMI , vol.36 , Issue.3 , pp. 453-465
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 19
    • 57749170740 scopus 로고    scopus 로고
    • Zero-data learning of new tasks
    • H. Larochelle, D. Erhan, and Y. Bengio. Zero-data learning of new tasks. In AAAI, pages 646-651, 2008.
    • (2008) AAAI , pp. 646-651
    • Larochelle, H.1    Erhan, D.2    Bengio, Y.3
  • 20
    • 85167459882 scopus 로고    scopus 로고
    • Transfer learning with graph co-regularization
    • M. Long, J. Wang, G. Ding, D. Shen, and Q. Yang. Transfer learning with graph co-regularization. In AAAI, 2012.
    • (2012) AAAI
    • Long, M.1    Wang, J.2    Ding, G.3    Shen, D.4    Yang, Q.5
  • 21
    • 85041913771 scopus 로고    scopus 로고
    • From zero-shot learning to conventional supervised classification: Unseen visual data synthesis
    • Y. Long, L. Liu, F. Shen, and L. Shao. From zero-shot learning to conventional supervised classification: Unseen visual data synthesis. In CVPR, 2017.
    • (2017) CVPR
    • Long, Y.1    Liu, L.2    Shen, F.3    Shao, L.4
  • 22
    • 84911410734 scopus 로고    scopus 로고
    • COSTA: Cooccurrence statistics for zero-shot classification
    • T. Mensink, E. Gavves, and C. G. M. Snoek. COSTA: cooccurrence statistics for zero-shot classification. In CVPR, pages 2441-2448, 2014.
    • (2014) CVPR , pp. 2441-2448
    • Mensink, T.1    Gavves, E.2    Snoek, C.G.M.3
  • 24
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111-3119, 2013.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 27
    • 84856670612 scopus 로고    scopus 로고
    • Relative attributes
    • D. Parikh and K. Grauman. Relative attributes. In ICCV, pages 503-510, 2011.
    • (2011) ICCV , pp. 503-510
    • Parikh, D.1    Grauman, K.2
  • 28
    • 84900870389 scopus 로고    scopus 로고
    • The SUN attribute database: Beyond categories for deeper scene understanding
    • G. Patterson, C. Xu, H. Su, and J. Hays. The SUN attribute database: Beyond categories for deeper scene understanding. IJCV, 108(1-2):59-81, 2014.
    • (2014) IJCV , vol.108 , Issue.1-2 , pp. 59-81
    • Patterson, G.1    Xu, C.2    Su, H.3    Hays, J.4
  • 29
    • 84949786088 scopus 로고    scopus 로고
    • Nonnegative matrix tri-factorization with graph regularization for community detection in social networks
    • Y. Pei, N. Chakraborty, and K. Sycara. Nonnegative matrix tri-factorization with graph regularization for community detection in social networks. In IJCAI, pages 2083-2089, 2015.
    • (2015) IJCAI , pp. 2083-2089
    • Pei, Y.1    Chakraborty, N.2    Sycara, K.3
  • 30
    • 77955989949 scopus 로고    scopus 로고
    • What helps where- and why? Semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where- and why? semantic relatedness for knowledge transfer. In CVPR, pages 910-917, 2010.
    • (2010) CVPR , pp. 910-917
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 31
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. H. S. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, pages 2152-2161, 2015.
    • (2015) ICML , pp. 2152-2161
    • Romera-Paredes, B.1    Torr, P.H.S.2
  • 32
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
    • (2014) CoRR, abs/1409.1556
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 84898938559 scopus 로고    scopus 로고
    • Zeroshot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng. Zeroshot learning through cross-modal transfer. In NIPS, pages 935-943, 2013.
    • (2013) NIPS , pp. 935-943
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.Y.4
  • 35
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-sne
    • L. van der Maaten and G. E. Hinton. Visualizing high-dimensional data using t-sne. JMLR, 9:2579-2605, 2008.
    • (2008) JMLR , vol.9 , pp. 2579-2605
    • Van Der Maaten, L.1    Hinton, G.E.2
  • 37
    • 85007153122 scopus 로고    scopus 로고
    • Relational knowledge transfer for zero-shot learning
    • D. Wang, Y. Li, Y. Lin, and Y. Zhuang. Relational knowledge transfer for zero-shot learning. In AAAI, pages 2145-2151, 2016.
    • (2016) AAAI , pp. 2145-2151
    • Wang, D.1    Li, Y.2    Lin, Y.3    Zhuang, Y.4
  • 38
    • 84863015875 scopus 로고    scopus 로고
    • Dyadic transfer learning for cross-domain image classification
    • H. Wang, F. Nie, H. Huang, and C. H. Q. Ding. Dyadic transfer learning for cross-domain image classification. In ICCV, pages 551-556, 2011.
    • (2011) ICCV , pp. 551-556
    • Wang, H.1    Nie, F.2    Huang, H.3    Ding, C.H.Q.4
  • 39
    • 78149305536 scopus 로고    scopus 로고
    • Attribute-based transfer learning for object categorization with zero/one training example
    • X. Yu and Y. Aloimonos. Attribute-based transfer learning for object categorization with zero/one training example. In ECCV, pages 127-140, 2010.
    • (2010) ECCV , pp. 127-140
    • Yu, X.1    Aloimonos, Y.2
  • 40
    • 85029388674 scopus 로고    scopus 로고
    • Visual translation embedding network for visual relation detection
    • H. Zhang, Z. Kyaw, S.-F. Chang, and T.-S. Chua. Visual translation embedding network for visual relation detection. In CVPR, 2017.
    • (2017) CVPR
    • Zhang, H.1    Kyaw, Z.2    Chang, S.-F.3    Chua, T.-S.4
  • 41
    • 84887498863 scopus 로고    scopus 로고
    • Attribute-augmented semantic hierarchy: Towards bridging semantic gap and intention gap in image retrieval
    • H. Zhang, Z.-J. Zha, Y. Yang, S. Yan, Y. Gao, and T.-S. Chua. Attribute-augmented semantic hierarchy: towards bridging semantic gap and intention gap in image retrieval. In ACM MM, pages 33-42, 2013.
    • (2013) ACM MM , pp. 33-42
    • Zhang, H.1    Zha, Z.-J.2    Yang, Y.3    Yan, S.4    Gao, Y.5    Chua, T.-S.6
  • 42
    • 84973910934 scopus 로고    scopus 로고
    • Zero-shot learning via semantic similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, pages 4166-4174, 2015.
    • (2015) ICCV , pp. 4166-4174
    • Zhang, Z.1    Saligrama, V.2
  • 43
    • 85092838760 scopus 로고    scopus 로고
    • Zero-shot learning via joint latent similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via joint latent similarity embedding. In CVPR, pages 2124-2132, 2016.
    • (2016) CVPR , pp. 2124-2132
    • Zhang, Z.1    Saligrama, V.2
  • 44
    • 84990056314 scopus 로고    scopus 로고
    • Zero-shot recognition via structured prediction
    • B. Leibe, J. Matas, N. Sebe, and M. Welling, editors
    • Z. Zhang and V. Saligrama. Zero-shot recognition via structured prediction. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, ECCV, pages 533-548, 2016.
    • (2016) ECCV , pp. 533-548
    • Zhang, Z.1    Saligrama, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.