메뉴 건너뛰기




Volumn , Issue , 2013, Pages 33-42

Attribute-augmented semantic hierarchy: Towards bridging semantic gap and intention gap in image retrieval

Author keywords

Attribute; Image retrieval; Semantic hierarchy

Indexed keywords

ATTRIBUTE; CONTENT-BASED IMAGE RETRIEVAL SYSTEM; LARGE-SCALE DATUM; SEARCH INTENTS; SEMANTIC AFFINITY; SEMANTIC HIERARCHIES; SEMANTIC LEVELS; SEMANTIC SIMILARITY;

EID: 84887498863     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2502081.2502093     Document Type: Conference Paper
Times cited : (132)

References (40)
  • 2
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, influences, and trends of the new age
    • R. Datta, D. Joshi, J. Li, and J. Wang. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 2008.
    • (2008) ACM Computing Surveys
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.4
  • 3
    • 80052910977 scopus 로고    scopus 로고
    • Hierarchical semantic indexing for large scale image retrieval
    • J. Deng, A. C. Berg, and L. Fei-Fei. Hierarchical semantic indexing for large scale image retrieval. In CVPR, 2011.
    • (2011) CVPR
    • Deng, J.1    Berg, A.C.2    Fei-Fei, L.3
  • 5
    • 80052872247 scopus 로고    scopus 로고
    • Visual and semantic similarity in imagenet
    • T. Deselaers and V. Ferrari. Visual and semantic similarity in imagenet. In CVPR, 2011.
    • (2011) CVPR
    • Deselaers, T.1    Ferrari, V.2
  • 6
    • 80052883815 scopus 로고    scopus 로고
    • Combining attributes and fisher vectors for efficient image retrieval
    • M. Douze, A. Ramisa, and C. Schmid. Combining attributes and fisher vectors for efficient image retrieval. In CVPR, 2011.
    • (2011) CVPR
    • Douze, M.1    Ramisa, A.2    Schmid, C.3
  • 7
    • 84887469134 scopus 로고    scopus 로고
    • Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation
    • J. Fan, Y. Gao, and H. Luo. Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation. TIP, 2008.
    • (2008) TIP
    • Fan, J.1    Gao, Y.2    Luo, H.3
  • 9
    • 84866636074 scopus 로고    scopus 로고
    • Weak attributes for large-scale image retrieval
    • X. Felix, R. Ji, M. Tsai, G. Ye, and S. Chang. Weak attributes for large-scale image retrieval. In CVPR, 2012.
    • (2012) CVPR
    • Felix, X.1    Ji, R.2    Tsai, M.3    Ye, G.4    Chang, S.5
  • 11
    • 84871362687 scopus 로고    scopus 로고
    • Intent and its discontents: The user at the wheel of the online video search engine
    • A. Hanjalic, C. Kofler, and M. Larson. Intent and its discontents: The user at the wheel of the online video search engine. In MM, 2012.
    • (2012) MM
    • Hanjalic, A.1    Kofler, C.2    Larson, M.3
  • 12
    • 0033909136 scopus 로고    scopus 로고
    • A conceptual framework for indexing visual information at multiple levels
    • A. Jaimes and S. fu Chang. A conceptual framework for indexing visual information at multiple levels. In SPIE Internet Imaging, 2000.
    • (2000) SPIE Internet Imaging
    • Jaimes, A.1    Fu Chang, S.2
  • 13
    • 84866726804 scopus 로고    scopus 로고
    • Whittlesearch: Image search with relative attribute feedback
    • A. Kovashka, D. Parikh, and K. Grauman. Whittlesearch: Image search with relative attribute feedback. In CVPR, 2012.
    • (2012) CVPR
    • Kovashka, A.1    Parikh, D.2    Grauman, K.3
  • 14
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV, 2001.
    • (2001) IJCV
    • Leung, T.1    Malik, J.2
  • 15
    • 33745130042 scopus 로고    scopus 로고
    • Content-based multimedia information retrieval: State of the art and challenges
    • M. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia information retrieval: State of the art and challenges. TOMCCAP, 2006.
    • (2006) TOMCCAP
    • Lew, M.1    Sebe, N.2    Djeraba, C.3    Jain, R.4
  • 16
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 17
    • 84887445391 scopus 로고    scopus 로고
    • Complex event detection via multi-source video attributes
    • Z. Ma, Y. Yang, Z. Xu, S. Yan, N. Sebe, and A. G. Hauptmann. Complex event detection via multi-source video attributes. In CVPR, 2012.
    • (2012) CVPR
    • Ma, Z.1    Yang, Y.2    Xu, Z.3    Yan, S.4    Sebe, N.5    Hauptmann, A.G.6
  • 18
    • 34948830130 scopus 로고    scopus 로고
    • Semantic hierarchies for visual object recognition
    • M. Marszalek and C. Schmid. Semantic hierarchies for visual object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Marszalek, M.1    Schmid, C.2
  • 19
    • 84887487169 scopus 로고    scopus 로고
    • On image auto-annotation with latent space models
    • F. Monay and D. Gatica-Perez. On image auto-annotation with latent space models. In MM, 2003.
    • (2003) MM
    • Monay, F.1    Gatica-Perez, D.2
  • 22
    • 80052900722 scopus 로고    scopus 로고
    • Interactively building a discriminative vocabulary of nameable attributes
    • D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In CVPR, 2011.
    • (2011) CVPR
    • Parikh, D.1    Grauman, K.2
  • 23
    • 0032663356 scopus 로고    scopus 로고
    • Image retrieval: Current techniques, promising directions, and open issues
    • Y. Rui, T. S. Huang, and S.-F. Chang. Image retrieval: Current techniques, promising directions, and open issues. JVCIR, 1999.
    • (1999) JVCIR
    • Rui, Y.1    Huang, T.S.2    Chang, S.-F.3
  • 24
    • 0032166448 scopus 로고    scopus 로고
    • Relevance feedback: A power tool for interactive content-based image retrieval
    • Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Relevance feedback: A power tool for interactive content-based image retrieval. TCSVT, 1998.
    • (1998) TCSVT
    • Rui, Y.1    Huang, T.S.2    Ortega, M.3    Mehrotra, S.4
  • 25
    • 84856200679 scopus 로고    scopus 로고
    • Attribute learning in large-scale datasets
    • O. Russakovsky and L. Fei-Fei. Attribute learning in large-scale datasets. In ECCV, 2010.
    • (2010) ECCV
    • Russakovsky, O.1    Fei-Fei, L.2
  • 26
    • 84866720092 scopus 로고    scopus 로고
    • Multi-attribute spaces: Calibration for attribute fusion and similarity search
    • W. J. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult. Multi-attribute spaces: Calibration for attribute fusion and similarity search. In CVPR, 2012.
    • (2012) CVPR
    • Scheirer, W.J.1    Kumar, N.2    Belhumeur, P.N.3    Boult, T.E.4
  • 29
    • 84887498220 scopus 로고    scopus 로고
    • Visualseek: A fully automated content-based image query system
    • J. R. Smith and S.-F. Chang. Visualseek: A fully automated content-based image query system. In MM, 1997.
    • (1997) MM
    • Smith, J.R.1    Chang, S.-F.2
  • 31
    • 68349121465 scopus 로고    scopus 로고
    • Concept-based video retrieval
    • C. G. Snoek and M. Worring. Concept-based video retrieval. FTIR, 2008.
    • (2008) FTIR
    • Snoek, C.G.1    Worring, M.2
  • 32
    • 77956002828 scopus 로고    scopus 로고
    • Taxonomic classification for web-based videos
    • Y. Song, M. Zhao, J. Yagnik, and X. Wu. Taxonomic classification for web-based videos. In CVPR, 2010.
    • (2010) CVPR
    • Song, Y.1    Zhao, M.2    Yagnik, J.3    Wu, X.4
  • 33
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. TPAMI, 2006.
    • (2006) TPAMI
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 34
    • 14644445384 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval
    • S. Tong and E. Chang. Support vector machine active learning for image retrieval. In MM, 2001.
    • (2001) MM
    • Tong, S.1    Chang, E.2
  • 36
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 37
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2006.
    • (2006) NIPS
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 40
    • 67349089521 scopus 로고    scopus 로고
    • Maximum margin clustering made practical
    • K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. TNN, 2009.
    • (2009) TNN
    • Zhang, K.1    Tsang, I.W.2    Kwok, J.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.