메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 3107-3115

Visual translation embedding network for visual relation detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; KNOWLEDGE MANAGEMENT; OBJECT DETECTION; TRANSLATION (LANGUAGES); VECTOR SPACES;

EID: 85029388674     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.331     Document Type: Conference Paper
Times cited : (506)

References (44)
  • 1
    • 84985013144 scopus 로고    scopus 로고
    • Deep compositional question answering with neural module networks
    • J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Deep compositional question answering with neural module networks. In CVPR, 2016.
    • (2016) CVPR
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 3
  • 6
    • 0033778373 scopus 로고    scopus 로고
    • Representation of manipulable man-made objects in the dorsal stream
    • L. L. Chao and A. Martin. Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 2000.
    • (2000) Neuroimage
    • Chao, L.L.1    Martin, A.2
  • 7
    • 79953187637 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • C. Desai, D. Ramanan, and C. C. Fowlkes. Discriminative models for multi-class object layout. IJCV, 2011.
    • (2011) IJCV
    • Desai, C.1    Ramanan, D.2    Fowlkes, C.C.3
  • 8
    • 84943769848 scopus 로고    scopus 로고
    • Question answering over freebase with multi-column convolutional neural networks
    • L. Dong, F. Wei, M. Zhou, and K. Xu. Question answering over freebase with multi-column convolutional neural networks. In ACL, 2015.
    • (2015) ACL
    • Dong, L.1    Wei, F.2    Zhou, M.3    Xu, K.4
  • 11
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 14
    • 70450155469 scopus 로고    scopus 로고
    • Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers
    • A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In ECCV, 2008.
    • (2008) ECCV
    • Gupta, A.1    Davis, L.S.2
  • 15
    • 69549121743 scopus 로고    scopus 로고
    • Observing human-object interactions: Using spatial and functional compatibility for recognition
    • A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-object interactions: Using spatial and functional compatibility for recognition. TPAMI, 2009.
    • (2009) TPAMI
    • Gupta, A.1    Kembhavi, A.2    Davis, L.S.3
  • 17
    • 85041926703 scopus 로고    scopus 로고
    • Revisiting visual question answering baselines
    • A. Jabri, A. Joulin, and L. van der Maaten. Revisiting visual question answering baselines. In ECCV, 2016.
    • (2016) ECCV
    • Jabri, A.1    Joulin, A.2    Van der Maaten, L.3
  • 19
    • 84986245786 scopus 로고    scopus 로고
    • Densecap: Fully convolutional localization networks for dense captioning
    • J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. In CVPR, 2016.
    • (2016) CVPR
    • Johnson, J.1    Karpathy, A.2    Fei-Fei, L.3
  • 21
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 24
    • 85041926899 scopus 로고    scopus 로고
    • Deep variation-structured reinforcement learning for visual relationship and attribute detection
    • X. Liang, L. Lee, and E. P. Xing. Deep variation-structured reinforcement learning for visual relationship and attribute detection. In CVPR, 2017.
    • (2017) CVPR
    • Liang, X.1    Lee, L.2    Xing, E.P.3
  • 25
    • 84952316342 scopus 로고    scopus 로고
    • Learning entity and relation embeddings for knowledge graph completion
    • Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation embeddings for knowledge graph completion. In AAAI, 2015.
    • (2015) AAAI
    • Lin, Y.1    Liu, Z.2    Sun, M.3    Liu, Y.4    Zhu, X.5
  • 27
    • 85035234967 scopus 로고    scopus 로고
    • Visual relationship detection with language priors
    • C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual relationship detection with language priors. In ECCV, 2016.
    • (2016) ECCV
    • Lu, C.1    Krishna, R.2    Bernstein, M.3    Fei-Fei, L.4
  • 28
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-sne
    • L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 2008.
    • (2008) JMLR
    • Maaten, L.V.D.1    Hinton, G.2
  • 29
    • 85041909637 scopus 로고    scopus 로고
    • Learning models for actions and personobject interactions with transfer to question answering
    • A. Mallya and S. Lazebnik. Learning models for actions and personobject interactions with transfer to question answering. In ECCV, 2016.
    • (2016) ECCV
    • Mallya, A.1    Lazebnik, S.2
  • 30
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 32
    • 84973856017 scopus 로고    scopus 로고
    • Flickr30k entities: Collecting regionto- phrase correspondences for richer image-to-sentence models
    • B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier, and S. Lazebnik. Flickr30k entities: Collecting regionto- phrase correspondences for richer image-to-sentence models. In ICCV, 2015.
    • (2015) ICCV
    • Plummer, B.A.1    Wang, L.2    Cervantes, C.M.3    Caicedo, J.C.4    Hockenmaier, J.5    Lazebnik, S.6
  • 34
    • 84986308404 scopus 로고    scopus 로고
    • You only look once: Unified, real-time object detection
    • J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In CVPR, 2016.
    • (2016) CVPR
    • Redmon, J.1    Divvala, S.2    Girshick, R.3    Farhadi, A.4
  • 35
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards realtime object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards realtime object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 36
    • 84959184467 scopus 로고    scopus 로고
    • Viske: Visual knowledge extraction and question answering by visual verification of relation phrases
    • F. Sadeghi, S. K. Divvala, and A. Farhadi. Viske: Visual knowledge extraction and question answering by visual verification of relation phrases. In CVPR, 2015.
    • (2015) CVPR
    • Sadeghi, F.1    Divvala, S.K.2    Farhadi, A.3
  • 37
    • 80052889458 scopus 로고    scopus 로고
    • Recognition using visual phrases
    • M. A. Sadeghi and A. Farhadi. Recognition using visual phrases. In CVPR, 2011.
    • (2011) CVPR
    • Sadeghi, M.A.1    Farhadi, A.2
  • 39
    • 80052896768 scopus 로고    scopus 로고
    • Efficient object category recognition using classemes
    • L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, 2010.
    • (2010) ECCV
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.3
  • 40
    • 85044362471 scopus 로고    scopus 로고
    • Show and tell: Lessons learned from the 2015 mscoco image captioning challenge
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: Lessons learned from the 2015 mscoco image captioning challenge. TPAMI, 2016.
    • (2016) TPAMI
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 42
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object interaction activities. In CVPR, 2010.
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 43
    • 85035206689 scopus 로고    scopus 로고
    • Learning from collective intelligence: Feature learning using social images and tags
    • H. Zhang, X. Shang, H. Luan, M. Wang, and T.-S. Chua. Learning from collective intelligence: Feature learning using social images and tags. TOMM, 2016.
    • (2016) TOMM
    • Zhang, H.1    Shang, X.2    Luan, H.3    Wang, M.4    Chua, T.-S.5
  • 44
    • 84986325880 scopus 로고    scopus 로고
    • Online collaborative learning for open-vocabulary visual classifiers
    • H. Zhang, X. Shang, W. Yang, H. Xu, H. Luan, and T.-S. Chua. Online collaborative learning for open-vocabulary visual classifiers. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, H.1    Shang, X.2    Yang, W.3    Xu, H.4    Luan, H.5    Chua, T.-S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.