-
1
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi, B. et al. (2015) Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol., 33(8), 831-838.
-
(2015)
Nat. Biotechnol.
, vol.33
, Issue.8
, pp. 831-838
-
-
Alipanahi, B.1
-
2
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y. et al. (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw., 5, 157-166.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
-
4
-
-
84971640658
-
-
Chollet, F. (2015). Keras. https://github.com/fchollet/keras.
-
(2015)
Keras
-
-
Chollet, F.1
-
5
-
-
7444260846
-
The encode (encyclopedia of DNA elements) project
-
Consortium, E.P. et al. (2004) The encode (encyclopedia of DNA elements) project. Science, 306, 636-640.
-
(2004)
Science
, vol.306
, pp. 636-640
-
-
Consortium, E.P.1
-
6
-
-
30044449116
-
Genome-wide mapping of dnase hypersensitive sites using massively parallel signature sequencing (mpss)
-
Crawford, G.E. et al. (2006) Genome-wide mapping of dnase hypersensitive sites using massively parallel signature sequencing (mpss). Genome Res., 16, 123-131.
-
(2006)
Genome Res.
, vol.16
, pp. 123-131
-
-
Crawford, G.E.1
-
7
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
(Jul)
-
Duchi, J. et al. (2011) Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12, (Jul), 2121-2159.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
-
8
-
-
84905484602
-
Enhanced regulatory sequence prediction using gapped k-mer features
-
Ghandi, M. et al. (2014) Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput. Biol., 10, e1003711.
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003711
-
-
Ghandi, M.1
-
10
-
-
84939247735
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
He, K. et al. (2014). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence (TPAMI), 37, p.1904-1916.
-
(2014)
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
, vol.37
, pp. 1904-1916
-
-
He, K.1
-
11
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., and Salakhutdinov, R.R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
12
-
-
0042276525
-
The vanishing gradient problem during learning recurrent neural nets and problem solutions
-
Hochreiter, S. (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzz. Knowledge-Based Syst., 6, 107-116.
-
(1998)
Int. J. Uncertain. Fuzz. Knowledge-Based Syst.
, vol.6
, pp. 107-116
-
-
Hochreiter, S.1
-
14
-
-
79952184341
-
Chromatin accessibility pre-determines glucocorticoid receptor binding patterns
-
John, S. et al. (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nature Genet., 43, 264-268.
-
(2011)
Nature Genet.
, vol.43
, pp. 264-268
-
-
John, S.1
-
15
-
-
84976908652
-
Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
-
Kelley, D.R. et al. (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res., 26(7), 990-999.
-
(2016)
Genome Res.
, vol.26
, Issue.7
, pp. 990-999
-
-
Kelley, D.R.1
-
17
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Platt, J.C. et al. (eds) Curran Associates, NY 12571.
-
Krizhevsky, A. et al. (2012). Imagenet classification with deep convolutional neural networks. In: Platt, J.C. et al. (eds) Advances in Neural Information Processing Systems, NIPS. Curran Associates, NY 12571. pp.1097-1105.
-
(2012)
Advances in Neural Information Processing Systems, NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
-
18
-
-
84926067654
-
Distributed representations of sentences and documents
-
Le, Q.V., and Mikolov, T. (2014). Distributed representations of sentences and documents. In: ICML, Vol. 14, p.1188-1196.
-
(2014)
ICML
, vol.14
, pp. 1188-1196
-
-
Le, Q.V.1
Mikolov, T.2
-
19
-
-
83055181959
-
Discriminative prediction of mammalian enhancers from DNA sequence
-
Lee, D. et al. (2011) Discriminative prediction of mammalian enhancers from dna sequence. Genome Res., 21, 2167-2180.
-
(2011)
Genome Res.
, vol.21
, pp. 2167-2180
-
-
Lee, D.1
-
21
-
-
57249084011
-
Visualizing data using t-SNE
-
Nov
-
Maaten, L. v d., and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, (Nov), 2579-2605.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2579-2605
-
-
Maaten, L.V.D.1
Hinton, G.2
-
22
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
Burges, C.J.C. et al. (eds) Curran Associates, NY 12571
-
Mikolov, T. et al. (2013). Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C. et al. (eds) Advances in Neural Information Processing Systems, NIPS. Curran Associates, NY 12571. pp. 3111-3119.
-
(2013)
Advances in Neural Information Processing Systems, NIPS
, pp. 3111-3119
-
-
Mikolov, T.1
-
24
-
-
35949000868
-
Open conformation chromatin and pluripotency
-
Niwa, H. (2007) Open conformation chromatin and pluripotency. Genes Dev., 21, 2671-2676.
-
(2007)
Genes Dev.
, vol.21
, pp. 2671-2676
-
-
Niwa, H.1
-
25
-
-
84961289992
-
GloVe: Global vectors for word representation
-
Pennington, J. et al. (2014). GloVe: global vectors for word representation. In: EMNLP, volume 14, p.1532-43.
-
(2014)
EMNLP
, vol.14
, pp. 1532-1543
-
-
Pennington, J.1
-
26
-
-
84951119143
-
Convolutional LSTM networks for subcellular localization of proteins
-
Springer International Publishing
-
Sønderby, S.K. et al. (2015). Convolutional LSTM networks for subcellular localization of proteins. In: International Conference on Algorithms for Computational Biology, p.68-80. Springer International Publishing.
-
(2015)
International Conference on Algorithms for Computational Biology
, pp. 68-80
-
-
Sønderby, S.K.1
-
27
-
-
84943797465
-
Improved semantic representations from tree-structured long short-term memory networks
-
Tai, K.S. et al. (2015). Improved semantic representations from tree-structured long short-term memory networks. In: Annual Meeting of the Association for Computational Linguistics, p.1556.
-
(2015)
Annual Meeting of the Association for Computational Linguistics
, pp. 1556
-
-
Tai, K.S.1
-
29
-
-
84894651254
-
Coupling transcription factor occupancy to nucleo-some architecture with DNase-flash
-
Vierstra, J. et al. (2014) Coupling transcription factor occupancy to nucleo-some architecture with DNase-flash. Nat. Methods, 11, 66-72.
-
(2014)
Nat. Methods
, vol.11
, pp. 66-72
-
-
Vierstra, J.1
-
30
-
-
85007368850
-
Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data
-
Wang, Y. et al. (2016) Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data. Natl. Sci. Rev., 3(2), 240-251.
-
(2016)
Natl. Sci. Rev.
, vol.3
, Issue.2
, pp. 240-251
-
-
Wang, Y.1
-
31
-
-
0242662161
-
The general inefficiency of batch training for gradient descent learning
-
Wilson, D.R., and Martinez, T.R. (2003) The general inefficiency of batch training for gradient descent learning. Neural Netw., 16, 1429-1451.
-
(2003)
Neural Netw.
, vol.16
, pp. 1429-1451
-
-
Wilson, D.R.1
Martinez, T.R.2
-
32
-
-
84976520648
-
Convolutional neural network architectures for predicting DNA-protein binding
-
Zeng, H. et al. (2016) Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics, 32, i121-i127.
-
(2016)
Bioinformatics
, vol.32
, pp. i121-i127
-
-
Zeng, H.1
-
33
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou, J., and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934.
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
|