메뉴 건너뛰기




Volumn 33, Issue 14, 2017, Pages i92-i101

Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOLOGY; CELL LINE; CHROMATIN; HUMAN; METABOLISM; PROCEDURES; SOFTWARE;

EID: 85024503304     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx234     Document Type: Conference Paper
Times cited : (93)

References (33)
  • 1
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B. et al. (2015) Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol., 33(8), 831-838.
    • (2015) Nat. Biotechnol. , vol.33 , Issue.8 , pp. 831-838
    • Alipanahi, B.1
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y. et al. (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw., 5, 157-166.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 157-166
    • Bengio, Y.1
  • 4
    • 84971640658 scopus 로고    scopus 로고
    • Chollet, F. (2015). Keras. https://github.com/fchollet/keras.
    • (2015) Keras
    • Chollet, F.1
  • 5
    • 7444260846 scopus 로고    scopus 로고
    • The encode (encyclopedia of DNA elements) project
    • Consortium, E.P. et al. (2004) The encode (encyclopedia of DNA elements) project. Science, 306, 636-640.
    • (2004) Science , vol.306 , pp. 636-640
    • Consortium, E.P.1
  • 6
    • 30044449116 scopus 로고    scopus 로고
    • Genome-wide mapping of dnase hypersensitive sites using massively parallel signature sequencing (mpss)
    • Crawford, G.E. et al. (2006) Genome-wide mapping of dnase hypersensitive sites using massively parallel signature sequencing (mpss). Genome Res., 16, 123-131.
    • (2006) Genome Res. , vol.16 , pp. 123-131
    • Crawford, G.E.1
  • 7
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • (Jul)
    • Duchi, J. et al. (2011) Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12, (Jul), 2121-2159.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1
  • 8
    • 84905484602 scopus 로고    scopus 로고
    • Enhanced regulatory sequence prediction using gapped k-mer features
    • Ghandi, M. et al. (2014) Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput. Biol., 10, e1003711.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003711
    • Ghandi, M.1
  • 10
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K. et al. (2014). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence (TPAMI), 37, p.1904-1916.
    • (2014) IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) , vol.37 , pp. 1904-1916
    • He, K.1
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., and Salakhutdinov, R.R. (2006) Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 12
    • 0042276525 scopus 로고    scopus 로고
    • The vanishing gradient problem during learning recurrent neural nets and problem solutions
    • Hochreiter, S. (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzz. Knowledge-Based Syst., 6, 107-116.
    • (1998) Int. J. Uncertain. Fuzz. Knowledge-Based Syst. , vol.6 , pp. 107-116
    • Hochreiter, S.1
  • 14
    • 79952184341 scopus 로고    scopus 로고
    • Chromatin accessibility pre-determines glucocorticoid receptor binding patterns
    • John, S. et al. (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nature Genet., 43, 264-268.
    • (2011) Nature Genet. , vol.43 , pp. 264-268
    • John, S.1
  • 15
    • 84976908652 scopus 로고    scopus 로고
    • Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley, D.R. et al. (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res., 26(7), 990-999.
    • (2016) Genome Res. , vol.26 , Issue.7 , pp. 990-999
    • Kelley, D.R.1
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Platt, J.C. et al. (eds) Curran Associates, NY 12571.
    • Krizhevsky, A. et al. (2012). Imagenet classification with deep convolutional neural networks. In: Platt, J.C. et al. (eds) Advances in Neural Information Processing Systems, NIPS. Curran Associates, NY 12571. pp.1097-1105.
    • (2012) Advances in Neural Information Processing Systems, NIPS , pp. 1097-1105
    • Krizhevsky, A.1
  • 18
    • 84926067654 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Le, Q.V., and Mikolov, T. (2014). Distributed representations of sentences and documents. In: ICML, Vol. 14, p.1188-1196.
    • (2014) ICML , vol.14 , pp. 1188-1196
    • Le, Q.V.1    Mikolov, T.2
  • 19
    • 83055181959 scopus 로고    scopus 로고
    • Discriminative prediction of mammalian enhancers from DNA sequence
    • Lee, D. et al. (2011) Discriminative prediction of mammalian enhancers from dna sequence. Genome Res., 21, 2167-2180.
    • (2011) Genome Res. , vol.21 , pp. 2167-2180
    • Lee, D.1
  • 21
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Nov
    • Maaten, L. v d., and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, (Nov), 2579-2605.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Maaten, L.V.D.1    Hinton, G.2
  • 22
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Burges, C.J.C. et al. (eds) Curran Associates, NY 12571
    • Mikolov, T. et al. (2013). Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C. et al. (eds) Advances in Neural Information Processing Systems, NIPS. Curran Associates, NY 12571. pp. 3111-3119.
    • (2013) Advances in Neural Information Processing Systems, NIPS , pp. 3111-3119
    • Mikolov, T.1
  • 24
    • 35949000868 scopus 로고    scopus 로고
    • Open conformation chromatin and pluripotency
    • Niwa, H. (2007) Open conformation chromatin and pluripotency. Genes Dev., 21, 2671-2676.
    • (2007) Genes Dev. , vol.21 , pp. 2671-2676
    • Niwa, H.1
  • 25
    • 84961289992 scopus 로고    scopus 로고
    • GloVe: Global vectors for word representation
    • Pennington, J. et al. (2014). GloVe: global vectors for word representation. In: EMNLP, volume 14, p.1532-43.
    • (2014) EMNLP , vol.14 , pp. 1532-1543
    • Pennington, J.1
  • 26
    • 84951119143 scopus 로고    scopus 로고
    • Convolutional LSTM networks for subcellular localization of proteins
    • Springer International Publishing
    • Sønderby, S.K. et al. (2015). Convolutional LSTM networks for subcellular localization of proteins. In: International Conference on Algorithms for Computational Biology, p.68-80. Springer International Publishing.
    • (2015) International Conference on Algorithms for Computational Biology , pp. 68-80
    • Sønderby, S.K.1
  • 27
    • 84943797465 scopus 로고    scopus 로고
    • Improved semantic representations from tree-structured long short-term memory networks
    • Tai, K.S. et al. (2015). Improved semantic representations from tree-structured long short-term memory networks. In: Annual Meeting of the Association for Computational Linguistics, p.1556.
    • (2015) Annual Meeting of the Association for Computational Linguistics , pp. 1556
    • Tai, K.S.1
  • 29
    • 84894651254 scopus 로고    scopus 로고
    • Coupling transcription factor occupancy to nucleo-some architecture with DNase-flash
    • Vierstra, J. et al. (2014) Coupling transcription factor occupancy to nucleo-some architecture with DNase-flash. Nat. Methods, 11, 66-72.
    • (2014) Nat. Methods , vol.11 , pp. 66-72
    • Vierstra, J.1
  • 30
    • 85007368850 scopus 로고    scopus 로고
    • Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data
    • Wang, Y. et al. (2016) Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data. Natl. Sci. Rev., 3(2), 240-251.
    • (2016) Natl. Sci. Rev. , vol.3 , Issue.2 , pp. 240-251
    • Wang, Y.1
  • 31
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • Wilson, D.R., and Martinez, T.R. (2003) The general inefficiency of batch training for gradient descent learning. Neural Netw., 16, 1429-1451.
    • (2003) Neural Netw. , vol.16 , pp. 1429-1451
    • Wilson, D.R.1    Martinez, T.R.2
  • 32
    • 84976520648 scopus 로고    scopus 로고
    • Convolutional neural network architectures for predicting DNA-protein binding
    • Zeng, H. et al. (2016) Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics, 32, i121-i127.
    • (2016) Bioinformatics , vol.32 , pp. i121-i127
    • Zeng, H.1
  • 33
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J., and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934.
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.