-
1
-
-
80053403826
-
Ensemble methods in machine learning
-
New York: Springer
-
T. G. Dietterich, "Ensemble methods in machine learning," in Multiple Classifier Systems. New York: Springer, 2000, pp. 1-15.
-
(2000)
Multiple Classifier Systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
2
-
-
84962026438
-
Ensemble classification and regression-recent developments, applications and future directions [review article]
-
Feb
-
Y. Ren, L. Zhang, and P. N. Suganthan, "Ensemble classification and regression-recent developments, applications and future directions [review article]," IEEE Computational Intell. Mag., vol. 11, no. 1, pp. 41-53, Feb. 2016.
-
(2016)
IEEE Computational Intell. Mag.
, vol.11
, Issue.1
, pp. 41-53
-
-
Ren, Y.1
Zhang, L.2
Suganthan, P.N.3
-
5
-
-
0035478854
-
Random forests
-
Jan
-
L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, Jan. 2001.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
0030211964
-
Bagging predictors
-
Aug
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems?
-
Oct
-
M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?," J. Mach. Learn. Res., vol. 15, no. 1, pp. 3133-3181, Oct. 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
9
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
July
-
G. Valentini and T. G. Dietterich, "Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods," J. Mach. Learn. Res., vol. 5, pp. 725-775, July 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.G.2
-
10
-
-
80052213499
-
Multiple kernel learning algorithms
-
Jul
-
M. Gönen and E. Alpaydin, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, Jul., 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydin, E.2
-
11
-
-
80052423308
-
On oblique random forests
-
Sept
-
B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and F. A. Hamprecht, "On oblique random forests," in Proc. Machine Learning and Knowledge Discovery in Databases Conf., Sept. 2011, pp. 453-469.
-
(2011)
Proc. Machine Learning and Knowledge Discovery in Databases Conf.
, pp. 453-469
-
-
Menze, B.H.1
Kelm, B.M.2
Splitthoff, D.N.3
Koethe, U.4
Hamprecht, F.A.5
-
12
-
-
84911466848
-
Oblique decision tree ensemble via multisurface proximal support vector machine
-
Oct
-
L. Zhang and P. N. Suganthan, "Oblique decision tree ensemble via multisurface proximal support vector machine," IEEE Trans. Cybern., vol. 45, no. 10, pp. 2165-2176, Oct. 2015.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.10
, pp. 2165-2176
-
-
Zhang, L.1
Suganthan, P.N.2
-
13
-
-
84902362182
-
Random forests with ensemble of feature spaces
-
Oct
-
L. Zhang and P. N. Suganthan, "Random forests with ensemble of feature spaces," Pattern Recogn., vol. 47, no. 10, pp. 3429-3437, Oct. 2014.
-
(2014)
Pattern Recogn.
, vol.47
, Issue.10
, pp. 3429-3437
-
-
Zhang, L.1
Suganthan, P.N.2
-
14
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
C. Saunders, A. Gammerman, and V. Vovk, "Ridge regression learning algorithm in dual variables," in Proc. 15th Int. Conf. Machine Learning, 1998, pp. 515-521.
-
(1998)
Proc. 15th Int. Conf. Machine Learning
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
15
-
-
35148836705
-
Face recognition using kernel ridge regression
-
S. An, W. Liu, and S. Venkatesh, "Face recognition using kernel ridge regression," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007, pp. 1-7.
-
(2007)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 1-7
-
-
An, S.1
Liu, W.2
Venkatesh, S.3
-
16
-
-
0003684449
-
-
Berlin, Germany: Springer
-
J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning. Springer Series in Statistics. Berlin, Germany: Springer, 2001, vol. 1.
-
(2001)
The Elements of Statistical Learning. Springer Series in Statistics
, vol.1
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
17
-
-
84959205383
-
Global refinement of random forest
-
S. Ren, X. Cao, Y. Wei, and J. Sun, "Global refinement of random forest," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 723-730.
-
(2015)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 723-730
-
-
Ren, S.1
Cao, X.2
Wei, Y.3
Sun, J.4
-
19
-
-
0004094721
-
-
Cambridge, MA: MIT Press
-
B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
20
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
Oct
-
J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, "Rotation forest: A new classifier ensemble method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619-1630, Oct. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
21
-
-
0003413187
-
Neural networks: A comprehensive foundation
-
Dec
-
S. Haykin and N. Network, "Neural networks: A comprehensive foundation," Neural Netw., vol. 2, no. 2004, Dec. 2004.
-
(2004)
Neural Netw.
, vol.2
, Issue.2004
-
-
Haykin, S.1
Network, N.2
-
22
-
-
0024137490
-
Increased rates of convergence through learning rate adaptation
-
R. A. Jacobs, "Increased rates of convergence through learning rate adaptation," Neural Netw., vol. 1, no. 4, pp. 295-307, 1988.
-
(1988)
Neural Netw.
, vol.1
, Issue.4
, pp. 295-307
-
-
Jacobs, R.A.1
-
24
-
-
0026745182
-
On the problem of local minima in backpropagation
-
Jan
-
M. Gori and A. Tesi, "On the problem of local minima in backpropagation," IEEE Trans. Pattern Anal. Mach. Intell., no. 1, pp. 76-86, Jan. 1992.
-
(1992)
IEEE Trans. Pattern Anal. Mach. Intell.
, Issue.1
, pp. 76-86
-
-
Gori, M.1
Tesi, A.2
-
25
-
-
84957926960
-
A survey of randomized algorithms for training neural networks
-
Oct
-
L. Zhang and P. Suganthan, "A survey of randomized algorithms for training neural networks," Inform. Sci., vol. 364, pp. 146-155, Oct. 2016.
-
(2016)
Inform. Sci.
, vol.364
, pp. 146-155
-
-
Zhang, L.1
Suganthan, P.2
-
26
-
-
0026868102
-
Functional-link net computing: Theory, system architecture, and functionalities
-
May
-
Y.-H. Pao and Y. Takefji, "Functional-link net computing: theory, system architecture, and functionalities," IEEE Comput. J., vol. 25, no. 5, pp. 76-79, May. 1992.
-
(1992)
IEEE Comput. J.
, vol.25
, Issue.5
, pp. 76-79
-
-
Pao, Y.-H.1
Takefji, Y.2
-
27
-
-
0029403793
-
Stochastic choice of basis functions in adaptive function approximation and the functional-link net
-
Nov
-
B. Igelnik and Y.-H. Pao, "Stochastic choice of basis functions in adaptive function approximation and the functional-link net," IEEE Trans. Neural Netw., vol. 6, no. 6, pp. 1320-1329, Nov. 1995.
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, Issue.6
, pp. 1320-1329
-
-
Igelnik, B.1
Pao, Y.-H.2
-
28
-
-
0029379686
-
The functional link net and learning optimal control
-
Oct
-
Y.-H. Pao and S. M. Phillips, "The functional link net and learning optimal control," Neurocomputing, vol. 9, no. 2, pp. 149-164, Oct. 1995.
-
(1995)
Neurocomputing
, vol.9
, Issue.2
, pp. 149-164
-
-
Pao, Y.-H.1
Phillips, S.M.2
-
29
-
-
84951823694
-
A comprehensive evaluation of random vector functional link networks
-
Nov
-
L. Zhang and P. Suganthan, "A comprehensive evaluation of random vector functional link networks," Inform. Sci., vol. 367, pp. 1094-1105, Nov. 2016.
-
(2016)
Inform. Sci.
, vol.367
, pp. 1094-1105
-
-
Zhang, L.1
Suganthan, P.2
-
30
-
-
84955577214
-
Random vector functional link network for short-term electricity load demand forecasting
-
Nov
-
Y. Ren, P. Suganthan, N. Srikanth, and G. Amaratunga, "Random vector functional link network for short-term electricity load demand forecasting," Inform. Sci., vol. 367, pp. 1078-1093, Nov. 2016.
-
(2016)
Inform. Sci.
, vol.367
, pp. 1078-1093
-
-
Ren, Y.1
Suganthan, P.2
Srikanth, N.3
Amaratunga, G.4
-
31
-
-
85029218360
-
Visual tracking with convolutional random vector functional link network
-
to be published
-
L. Zhang and P. N. Suganthan, "Visual tracking with convolutional random vector functional link network," IEEE Trans. Cybernetics, to be published.
-
IEEE Trans. Cybernetics
-
-
Zhang, L.1
Suganthan, P.N.2
-
32
-
-
84894439375
-
Fast decorrelated neural network ensembles with random weights
-
Apr
-
M. Alhamdoosh and D. Wang, "Fast decorrelated neural network ensembles with random weights," Inform. Sci., vol. 264, pp. 104-117, Apr. 2014.
-
(2014)
Inform. Sci.
, vol.264
, pp. 104-117
-
-
Alhamdoosh, M.1
Wang, D.2
-
33
-
-
0033485370
-
Ensemble learning via negative correlation
-
Dec
-
Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, Dec. 1999.
-
(1999)
Neural Netw.
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
34
-
-
33749243505
-
A co-regularization approach to semi-supervised learning with multiple views
-
V. Sindhwani, P. Niyogi, and M. Belkin, "A co-regularization approach to semi-supervised learning with multiple views," in Proc. ICML Workshop on Learning with Multiple Views, 2005, pp. 74-79.
-
(2005)
Proc. ICML Workshop on Learning with Multiple Views
, pp. 74-79
-
-
Sindhwani, V.1
Niyogi, P.2
Belkin, M.3
-
36
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Jan
-
J. Demŝar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demŝar, J.1
-
37
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
Mar
-
G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: a survey and categorisation," Inform. Fusion, vol. 6, no. 1, pp. 5-20, Mar. 2005.
-
(2005)
Inform. Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
38
-
-
80053459750
-
Ultra-fast optimization algorithm for sparse multi kernel learning
-
F. Orabona and L. Jie, "Ultra-fast optimization algorithm for sparse multi kernel learning," in Proc. 28th Int. Conf. Machine Learning, 2011, pp. 249-256.
-
(2011)
Proc. 28th Int. Conf. Machine Learning
, pp. 249-256
-
-
Orabona, F.1
Jie, L.2
-
39
-
-
57249084590
-
SimpleMKL
-
Nov
-
A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, "SimpleMKL," J. Mach. Learn. Res., vol. 9, pp. 2491-2521, Nov. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.R.2
Canu, S.3
Grandvalet, Y.4
|