메뉴 건너뛰기




Volumn 12, Issue 4, 2017, Pages 61-72

Benchmarking Ensemble Classifiers with Novel Co-Trained Kernal Ridge Regression and Random Vector Functional Link Ensembles [Research Frontier]

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; LEARNING SYSTEMS;

EID: 85035802026     PISSN: 1556603X     EISSN: None     Source Type: Journal    
DOI: 10.1109/MCI.2017.2742867     Document Type: Article
Times cited : (106)

References (40)
  • 1
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • New York: Springer
    • T. G. Dietterich, "Ensemble methods in machine learning," in Multiple Classifier Systems. New York: Springer, 2000, pp. 1-15.
    • (2000) Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.G.1
  • 2
    • 84962026438 scopus 로고    scopus 로고
    • Ensemble classification and regression-recent developments, applications and future directions [review article]
    • Feb
    • Y. Ren, L. Zhang, and P. N. Suganthan, "Ensemble classification and regression-recent developments, applications and future directions [review article]," IEEE Computational Intell. Mag., vol. 11, no. 1, pp. 41-53, Feb. 2016.
    • (2016) IEEE Computational Intell. Mag. , vol.11 , Issue.1 , pp. 41-53
    • Ren, Y.1    Zhang, L.2    Suganthan, P.N.3
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Jan
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, Jan. 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Aug
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Oct
    • M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?," J. Mach. Learn. Res., vol. 15, no. 1, pp. 3133-3181, Oct. 2014.
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 9
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • July
    • G. Valentini and T. G. Dietterich, "Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods," J. Mach. Learn. Res., vol. 5, pp. 725-775, July 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 10
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Jul
    • M. Gönen and E. Alpaydin, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, Jul., 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 12
    • 84911466848 scopus 로고    scopus 로고
    • Oblique decision tree ensemble via multisurface proximal support vector machine
    • Oct
    • L. Zhang and P. N. Suganthan, "Oblique decision tree ensemble via multisurface proximal support vector machine," IEEE Trans. Cybern., vol. 45, no. 10, pp. 2165-2176, Oct. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.10 , pp. 2165-2176
    • Zhang, L.1    Suganthan, P.N.2
  • 13
    • 84902362182 scopus 로고    scopus 로고
    • Random forests with ensemble of feature spaces
    • Oct
    • L. Zhang and P. N. Suganthan, "Random forests with ensemble of feature spaces," Pattern Recogn., vol. 47, no. 10, pp. 3429-3437, Oct. 2014.
    • (2014) Pattern Recogn. , vol.47 , Issue.10 , pp. 3429-3437
    • Zhang, L.1    Suganthan, P.N.2
  • 21
    • 0003413187 scopus 로고    scopus 로고
    • Neural networks: A comprehensive foundation
    • Dec
    • S. Haykin and N. Network, "Neural networks: A comprehensive foundation," Neural Netw., vol. 2, no. 2004, Dec. 2004.
    • (2004) Neural Netw. , vol.2 , Issue.2004
    • Haykin, S.1    Network, N.2
  • 22
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. A. Jacobs, "Increased rates of convergence through learning rate adaptation," Neural Netw., vol. 1, no. 4, pp. 295-307, 1988.
    • (1988) Neural Netw. , vol.1 , Issue.4 , pp. 295-307
    • Jacobs, R.A.1
  • 24
    • 0026745182 scopus 로고
    • On the problem of local minima in backpropagation
    • Jan
    • M. Gori and A. Tesi, "On the problem of local minima in backpropagation," IEEE Trans. Pattern Anal. Mach. Intell., no. 1, pp. 76-86, Jan. 1992.
    • (1992) IEEE Trans. Pattern Anal. Mach. Intell. , Issue.1 , pp. 76-86
    • Gori, M.1    Tesi, A.2
  • 25
    • 84957926960 scopus 로고    scopus 로고
    • A survey of randomized algorithms for training neural networks
    • Oct
    • L. Zhang and P. Suganthan, "A survey of randomized algorithms for training neural networks," Inform. Sci., vol. 364, pp. 146-155, Oct. 2016.
    • (2016) Inform. Sci. , vol.364 , pp. 146-155
    • Zhang, L.1    Suganthan, P.2
  • 26
    • 0026868102 scopus 로고
    • Functional-link net computing: Theory, system architecture, and functionalities
    • May
    • Y.-H. Pao and Y. Takefji, "Functional-link net computing: theory, system architecture, and functionalities," IEEE Comput. J., vol. 25, no. 5, pp. 76-79, May. 1992.
    • (1992) IEEE Comput. J. , vol.25 , Issue.5 , pp. 76-79
    • Pao, Y.-H.1    Takefji, Y.2
  • 27
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • Nov
    • B. Igelnik and Y.-H. Pao, "Stochastic choice of basis functions in adaptive function approximation and the functional-link net," IEEE Trans. Neural Netw., vol. 6, no. 6, pp. 1320-1329, Nov. 1995.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.-H.2
  • 28
    • 0029379686 scopus 로고
    • The functional link net and learning optimal control
    • Oct
    • Y.-H. Pao and S. M. Phillips, "The functional link net and learning optimal control," Neurocomputing, vol. 9, no. 2, pp. 149-164, Oct. 1995.
    • (1995) Neurocomputing , vol.9 , Issue.2 , pp. 149-164
    • Pao, Y.-H.1    Phillips, S.M.2
  • 29
    • 84951823694 scopus 로고    scopus 로고
    • A comprehensive evaluation of random vector functional link networks
    • Nov
    • L. Zhang and P. Suganthan, "A comprehensive evaluation of random vector functional link networks," Inform. Sci., vol. 367, pp. 1094-1105, Nov. 2016.
    • (2016) Inform. Sci. , vol.367 , pp. 1094-1105
    • Zhang, L.1    Suganthan, P.2
  • 30
    • 84955577214 scopus 로고    scopus 로고
    • Random vector functional link network for short-term electricity load demand forecasting
    • Nov
    • Y. Ren, P. Suganthan, N. Srikanth, and G. Amaratunga, "Random vector functional link network for short-term electricity load demand forecasting," Inform. Sci., vol. 367, pp. 1078-1093, Nov. 2016.
    • (2016) Inform. Sci. , vol.367 , pp. 1078-1093
    • Ren, Y.1    Suganthan, P.2    Srikanth, N.3    Amaratunga, G.4
  • 31
    • 85029218360 scopus 로고    scopus 로고
    • Visual tracking with convolutional random vector functional link network
    • to be published
    • L. Zhang and P. N. Suganthan, "Visual tracking with convolutional random vector functional link network," IEEE Trans. Cybernetics, to be published.
    • IEEE Trans. Cybernetics
    • Zhang, L.1    Suganthan, P.N.2
  • 32
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • Apr
    • M. Alhamdoosh and D. Wang, "Fast decorrelated neural network ensembles with random weights," Inform. Sci., vol. 264, pp. 104-117, Apr. 2014.
    • (2014) Inform. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.2
  • 33
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Dec
    • Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, Dec. 1999.
    • (1999) Neural Netw. , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 36
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Jan
    • J. Demŝar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demŝar, J.1
  • 37
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Mar
    • G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: a survey and categorisation," Inform. Fusion, vol. 6, no. 1, pp. 5-20, Mar. 2005.
    • (2005) Inform. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 38
    • 80053459750 scopus 로고    scopus 로고
    • Ultra-fast optimization algorithm for sparse multi kernel learning
    • F. Orabona and L. Jie, "Ultra-fast optimization algorithm for sparse multi kernel learning," in Proc. 28th Int. Conf. Machine Learning, 2011, pp. 249-256.
    • (2011) Proc. 28th Int. Conf. Machine Learning , pp. 249-256
    • Orabona, F.1    Jie, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.