메뉴 건너뛰기




Volumn 23, Issue 2, 2018, Pages 363-388

Prior sensitivity analysis in default bayesian structural equation modeling

Author keywords

Bayesian; Default priors; Sensitivity analysis; Structural equation models

Indexed keywords

HUMAN; MAXIMUM LIKELIHOOD METHOD; PHYSICIAN; PSYCHOLOGIST; PSYCINFO; SAMPLE SIZE; SCIENTIST; SENSITIVITY ANALYSIS; SIMULATION; STRUCTURAL EQUATION MODELING; BAYES THEOREM; PROCEDURES; PSYCHOLOGY; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 85035040110     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/met0000162     Document Type: Article
Times cited : (77)

References (76)
  • 2
    • 84879535463 scopus 로고    scopus 로고
    • Bayesian methods for the analysis of small sample multilevel data with a complex variance structure
    • Baldwin, S. A., & Fellingham, G. W. (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151-164
    • (2013) Psychological Methods , vol.18 , pp. 151-164
    • Baldwin, S.A.1    Fellingham, G.W.2
  • 3
    • 4043150795 scopus 로고    scopus 로고
    • The interplay of Bayesian and frequentist analysis
    • Bayarri, M. J., & Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. Statistical Science, 19, 58-80
    • (2004) Statistical Science , vol.19 , pp. 58-80
    • Bayarri, M.J.1    Berger, J.O.2
  • 4
    • 84867176040 scopus 로고    scopus 로고
    • The case for objective Bayesian analysis
    • Berger, J. O. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 3, 385-402
    • (2006) Bayesian Analysis , vol.3 , pp. 385-402
    • Berger, J.O.1
  • 5
    • 0030508463 scopus 로고    scopus 로고
    • Choice of hierarchical priors: Admissibility in estimation of normal means
    • Berger, J. O., & Strawderman, W. E. (1996). Choice of hierarchical priors: Admissibility in estimation of normal means. The Annals of Statistics, 24, 931-951
    • (1996) The Annals of Statistics , vol.24 , pp. 931-951
    • Berger, J.O.1    Strawderman, W.E.2
  • 7
    • 75849137003 scopus 로고
    • Issues in the comparative measurement of political democracy
    • Bollen, K. (1980). Issues in the comparative measurement of political democracy. American Sociological Review, 45, 370-390
    • (1980) American Sociological Review , vol.45 , pp. 370-390
    • Bollen, K.1
  • 9
    • 84930531682 scopus 로고    scopus 로고
    • Collinear latent variables in multilevel confirmatory factor analysis: A comparison of maximum likelihood and Bayesian estimations
    • Can, S., van de Schoot, R., & Hox, J. (2014). Collinear latent variables in multilevel confirmatory factor analysis: A comparison of maximum likelihood and Bayesian estimations. Educational and Psychological Measurement, 75, 406-427
    • (2014) Educational and Psychological Measurement , vol.75 , pp. 406-427
    • Can, S.1    van de Schoot, R.2    Hox, J.3
  • 13
  • 14
    • 0002632234 scopus 로고
    • An introduction to empirical Bayes data analysis
    • Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 83-87
    • (1985) The American Statistician , vol.39 , pp. 83-87
    • Casella, G.1
  • 16
    • 84884702463 scopus 로고    scopus 로고
    • Avoiding zero between-study variance estimates in random-effects meta-analysis
    • Chung, Y., Rabe-Hesketh, S., & Choi, I.-H. (2013). Avoiding zero between-study variance estimates in random-effects meta-analysis. Statistics in Medicine, 32, 4071-4089
    • (2013) Statistics in Medicine , vol.32 , pp. 4071-4089
    • Chung, Y.1    Rabe-Hesketh, S.2    Choi, I.-H.3
  • 17
    • 85047673368 scopus 로고    scopus 로고
    • Hierarchical modeling of sequential behavioral data: An empirical Bayesian approach
    • Dagne, G. A., Howe, G. W., Brown, C. H., & Muthén, B. O. (2002). Hierarchical modeling of sequential behavioral data: An empirical Bayesian approach. Psychological Methods, 7, 262-280
    • (2002) Psychological Methods , vol.7 , pp. 262-280
    • Dagne, G.A.1    Howe, G.W.2    Brown, C.H.3    Muthén, B.O.4
  • 19
    • 84861637571 scopus 로고    scopus 로고
    • Measurement and structural model class separation in mixture CFA: ML/EM versus MCMC
    • Depaoli, S. (2012). Measurement and structural model class separation in mixture CFA: ML/EM versus MCMC. Structural Equation Modeling: A Multidisciplinary Journal, 19, 178-203
    • (2012) Structural Equation Modeling: A Multidisciplinary Journal , vol.19 , pp. 178-203
    • Depaoli, S.1
  • 20
    • 84879532581 scopus 로고    scopus 로고
    • Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation
    • Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation. Psychological Methods, 18, 186-219
    • (2013) Psychological Methods , vol.18 , pp. 186-219
    • Depaoli, S.1
  • 21
    • 84898064791 scopus 로고    scopus 로고
    • The impact of inaccurate informative priors for growth parameters in Bayesian growth mixture modeling
    • Depaoli, S. (2014). The impact of inaccurate informative priors for growth parameters in Bayesian growth mixture modeling. Structural Equation Modeling: A Multidisciplinary Journal, 21, 239-252
    • (2014) Structural Equation Modeling: A Multidisciplinary Journal , vol.21 , pp. 239-252
    • Depaoli, S.1
  • 22
    • 84930577404 scopus 로고    scopus 로고
    • A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes
    • Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 22, 327-351
    • (2015) Structural Equation Modeling: A Multidisciplinary Journal , vol.22 , pp. 327-351
    • Depaoli, S.1    Clifton, J.P.2
  • 23
    • 84951310169 scopus 로고    scopus 로고
    • Improving transparency and replication in Bayesian statistics: The WAMBS-checklist
    • Depaoli, S., & van de Schoot, R. (2015). Improving transparency and replication in Bayesian statistics: The WAMBS-checklist. Psychological Methods, 22, 240-261
    • (2015) Psychological Methods , vol.22 , pp. 240-261
    • Depaoli, S.1    van de Schoot, R.2
  • 27
    • 84897951819 scopus 로고    scopus 로고
    • Reliability estimation in a multilevel confirmatory factor analysis framework
    • Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability estimation in a multilevel confirmatory factor analysis framework. Psychological Methods, 19, 72-91
    • (2014) Psychological Methods , vol.19 , pp. 72-91
    • Geldhof, G.J.1    Preacher, K.J.2    Zyphur, M.J.3
  • 28
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
    • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1, 515-534
    • (2006) Bayesian Analysis , vol.1 , pp. 515-534
    • Gelman, A.1
  • 30
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2, 1360-1383
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 31
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733-807
    • (1996) Statistica Sinica , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.-L.2    Stern, H.3
  • 32
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 34
    • 84866437643 scopus 로고    scopus 로고
    • A comparison of methods for estimating quadratic effects in nonlinear structural equation models
    • Harring, J. R., Weiss, B. A., & Hsu, J.-C. (2012). A comparison of methods for estimating quadratic effects in nonlinear structural equation models. Psychological Methods, 17, 193-214
    • (2012) Psychological Methods , vol.17 , pp. 193-214
    • Harring, J.R.1    Weiss, B.A.2    Hsu, J.-C.3
  • 36
    • 0030327881 scopus 로고    scopus 로고
    • The effect of improper priors on Gibbs sampling in hierarchical linear mixed models
    • Hobert, J. P., & Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. Journal of the American Statistical Association, 91, 1461-1473
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1461-1473
    • Hobert, J.P.1    Casella, G.2
  • 37
    • 84883641307 scopus 로고    scopus 로고
    • How few countries will do?. Comparative survey analysis from a Bayesian perspective
    • Hox, J., van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6, 87-93
    • (2012) Survey Research Methods , vol.6 , pp. 87-93
    • Hox, J.1    van de Schoot, R.2    Matthijsse, S.3
  • 39
    • 39849096207 scopus 로고    scopus 로고
    • A default conjugate prior for variance components in generalized linear mixed models (comment on article by Browne and Draper)
    • Kass, R. E., & Natarajan, R. (2006). A default conjugate prior for variance components in generalized linear mixed models (comment on article by Browne and Draper). Bayesian Analysis, 1, 535-542
    • (2006) Bayesian Analysis , vol.1 , pp. 535-542
    • Kass, R.E.1    Natarajan, R.2
  • 41
    • 84929509342 scopus 로고    scopus 로고
    • Fitting a linear-linear piecewise growth mixture model with unknown knots: A comparison of two common approaches to inference
    • Kohli, N., Hughes, J., Wang, C., Zopluoglu, C., & Davison, M. L. (2015). Fitting a linear-linear piecewise growth mixture model with unknown knots: A comparison of two common approaches to inference. Psychological Methods, 20, 259-275
    • (2015) Psychological Methods , vol.20 , pp. 259-275
    • Kohli, N.1    Hughes, J.2    Wang, C.3    Zopluoglu, C.4    Davison, M.L.5
  • 42
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 43
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R., & Jones, D. R. (2005). How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24, 2401-2428
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 44
    • 0001043565 scopus 로고
    • Let's take the con out of econometrics
    • Leamer, E. E. (1983). Let's take the con out of econometrics. The American Economic Review, 73, 31-43
    • (1983) The American Economic Review , vol.73 , pp. 31-43
    • Leamer, E.E.1
  • 45
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • Lee, S.-Y., & Song, X.-Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653-686
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 653-686
    • Lee, S.-Y.1    Song, X.-Y.2
  • 47
    • 83755205919 scopus 로고    scopus 로고
    • A 2× 2 taxonomy of multilevel latent contextual models: Accuracy-bias trade-offs in full and partial error correction models
    • Lüdtke, O., Marsh, H. W., Robitzsch, A., & Trautwein, U. (2011). A 2× 2 taxonomy of multilevel latent contextual models: Accuracy-bias trade-offs in full and partial error correction models. Psychological Methods, 16, 444-467
    • (2011) Psychological Methods , vol.16 , pp. 444-467
    • Lüdtke, O.1    Marsh, H.W.2    Robitzsch, A.3    Trautwein, U.4
  • 48
    • 84874144657 scopus 로고    scopus 로고
    • A general and flexible approach to estimating the social relations model using Bayesian methods
    • Lüdtke, O., Robitzsch, A., Kenny, D. A., & Trautwein, U. (2013). A general and flexible approach to estimating the social relations model using Bayesian methods. Psychological Methods, 18, 101-119
    • (2013) Psychological Methods , vol.18 , pp. 101-119
    • Lüdtke, O.1    Robitzsch, A.2    Kenny, D.A.3    Trautwein, U.4
  • 49
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-a Bayesian modelling framework: Concepts, structure, and extensibility
    • Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS-a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325-337
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 50
    • 69949190053 scopus 로고    scopus 로고
    • Sufficient sample sizes for multilevel modeling
    • Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1, 86-92
    • (2005) Methodology , vol.1 , pp. 86-92
    • Maas, C.J.1    Hox, J.J.2
  • 51
    • 84874392393 scopus 로고    scopus 로고
    • Hopes and cautions in implementing Bayesian structural equation modeling
    • MacCallum, R. C., Edwards, M. C., & Cai, L. (2012). Hopes and cautions in implementing Bayesian structural equation modeling. Psychological Methods, 17, 340-345
    • (2012) Psychological Methods , vol.17 , pp. 340-345
    • MacCallum, R.C.1    Edwards, M.C.2    Cai, L.3
  • 53
    • 77956841670 scopus 로고    scopus 로고
    • A Monte Carlo sample size study: How many countries are needed for accurate multilevel SEM?
    • Meuleman, B., & Billiet, J. (2009). A Monte Carlo sample size study: How many countries are needed for accurate multilevel SEM? Survey Research Methods, 3, 45-58
    • (2009) Survey Research Methods , vol.3 , pp. 45-58
    • Meuleman, B.1    Billiet, J.2
  • 54
    • 84872596638 scopus 로고    scopus 로고
    • Bayesian tests on components of the compound symmetry covariance matrix
    • Mulder, J., & Fox, J.-P. (2013). Bayesian tests on components of the compound symmetry covariance matrix. Statistics and Computing, 23, 109-122
    • (2013) Statistics and Computing , vol.23 , pp. 109-122
    • Mulder, J.1    Fox, J.-P.2
  • 55
    • 71649110692 scopus 로고    scopus 로고
    • Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors
    • Mulder, J., Hoijtink, H., & Klugkist, I. (2010). Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors. Journal of Statistical Planning and Inference, 140, 887-906
    • (2010) Journal of Statistical Planning and Inference , vol.140 , pp. 887-906
    • Mulder, J.1    Hoijtink, H.2    Klugkist, I.3
  • 57
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • Muthén, B. O., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335
    • (2012) Psychological Methods , vol.17 , pp. 313-335
    • Muthén, B.O.1    Asparouhov, T.2
  • 61
    • 84892506011 scopus 로고    scopus 로고
    • Evaluating sensitivity of parameters of interest to measurement invariance in latent variable models
    • Oberski, D. L. (2014). Evaluating sensitivity of parameters of interest to measurement invariance in latent variable models. Political Analysis, 22, 45-60
    • (2014) Political Analysis , vol.22 , pp. 45-60
    • Oberski, D.L.1
  • 62
    • 83755185629 scopus 로고    scopus 로고
    • A hierarchical latent stochastic differential equation model for affective dynamics
    • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological Methods, 16, 468-490
    • (2011) Psychological Methods , vol.16 , pp. 468-490
    • Oravecz, Z.1    Tuerlinckx, F.2    Vandekerckhove, J.3
  • 63
    • 67650521193 scopus 로고    scopus 로고
    • JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling
    • In K. Hornik, F. Leisch, & A. Zeileis (Eds.). Vienna, Austria: Technische Universität Wien
    • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), In Proceedings of the 3rd international workshop on distributed statistical computing (Vol. 124). Vienna, Austria: Technische Universität Wien. Retrieved from https://www.r-project.org/conferences/DSC-2003/Proceedings/
    • (2003) In Proceedings of the 3rd international workshop on distributed statistical computing , vol.124
    • Plummer, M.1
  • 64
    • 84872515955 scopus 로고    scopus 로고
    • On the half-Cauchy prior for a global scale parameter
    • Polson, N. G., & Scott, J. G. (2012). On the half-Cauchy prior for a global scale parameter. Bayesian Analysis, 7, 887-902
    • (2012) Bayesian Analysis , vol.7 , pp. 887-902
    • Polson, N.G.1    Scott, J.G.2
  • 65
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler
    • Raftery, A. E., & Lewis, S. (1992). How many iterations in the Gibbs sampler. Bayesian statistics, 4, 763-773
    • (1992) Bayesian statistics , vol.4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 68
    • 84863306901 scopus 로고    scopus 로고
    • lavaan: An R package for structural equation modeling
    • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. Retrieved from http://www .jstatsoft.org/v48/i02/
    • (2012) Journal of Statistical Software , vol.48 , pp. 1-36
    • Rosseel, Y.1
  • 69
    • 84945090610 scopus 로고
    • Using empirical Bayes techniques in the law school validity studies
    • Rubin, D. B. (1980). Using empirical Bayes techniques in the law school validity studies. Journal of the American Statistical Association, 75, 801-816
    • (1980) Journal of the American Statistical Association , vol.75 , pp. 801-816
    • Rubin, D.B.1
  • 70
    • 77956831890 scopus 로고    scopus 로고
    • Level-specific evaluation of model fit in multilevel structural equation modeling
    • Ryu, E., & West, S. G. (2009). Level-specific evaluation of model fit in multilevel structural equation modeling. Structural Equation Modeling, 16, 583-601
    • (2009) Structural Equation Modeling , vol.16 , pp. 583-601
    • Ryu, E.1    West, S.G.2
  • 71
    • 77953915319 scopus 로고    scopus 로고
    • Testing structural equation models or detection of misspecifications?
    • Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16, 561-582
    • (2009) Structural Equation Modeling , vol.16 , pp. 561-582
    • Saris, W.E.1    Satorra, A.2    van der Veld, W.M.3
  • 72
    • 0001550704 scopus 로고
    • Assessing uncertainty. Journal of the Royal Statistical Society
    • Tversky, A. (1974). Assessing uncertainty. Journal of the Royal Statistical Society. Series B (Methodological), 36, 148-159
    • (1974) Series B (Methodological) , vol.36 , pp. 148-159
    • Tversky, A.1
  • 75
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • In P. K. Goel & A. Zellner (Eds.), Amsterdam, the Netherlands: Elsevier
    • Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. K. Goel & A. Zellner (Eds.), Bayesian inference and decision techniques: Essays in Honor of Bruno De Finetti (pp. 233-243). Amsterdam, the Netherlands: Elsevier
    • (1986) Bayesian inference and decision techniques: Essays in Honor of Bruno De Finetti , pp. 233-243
    • Zellner, A.1
  • 76
    • 84873389203 scopus 로고    scopus 로고
    • Bayesian inference and application of robust growth curve models using Student's t distribution
    • Zhang, Z., Lai, K., Lu, Z., & Tong, X. (2013). Bayesian inference and application of robust growth curve models using Student's t distribution. Structural Equation Modeling: A Multidisciplinary Journal, 20, 47-78
    • (2013) Structural Equation Modeling: A Multidisciplinary Journal , vol.20 , pp. 47-78
    • Zhang, Z.1    Lai, K.2    Lu, Z.3    Tong, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.