메뉴 건너뛰기




Volumn 20, Issue 2, 2015, Pages 259-275

Fitting a linear-linear piecewise growth mixture model with unknown knots: A comparison of two common approaches to inference

Author keywords

Bayesian; Finite mixture; Longitudinal data; Maximum likelihood; Piecewise function

Indexed keywords

ALGORITHM; BAYES THEOREM; COMPARATIVE STUDY; LONGITUDINAL STUDY; MARKOV CHAIN; MONTE CARLO METHOD; STATISTICAL MODEL;

EID: 84929509342     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/met0000034     Document Type: Article
Times cited : (53)

References (56)
  • 1
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage.
    • Barnard, J., McCulloch, R., & Meng, X.-L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 1281-1312.
    • (2000) Statistica Sinica , vol.10 , pp. 1281-1312
    • Barnard, J.1    McCulloch, R.2    Meng, X.-L.3
  • 2
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes.
    • Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338-363. http://dx.doi.org/10.1037/1082-989X.8.3.338
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 3
    • 0039031881 scopus 로고
    • Intelligence at adulthood: A twentyfive year followup.
    • Bradway, K., & Thompson, C. (1962). Intelligence at adulthood: A twentyfive year followup. Journal of Educational Psychology, 53, 1-4. http://dx.doi.org/10.1037/h0045764
    • (1962) Journal of Educational Psychology , vol.53 , pp. 1-4
    • Bradway, K.1    Thompson, C.2
  • 5
    • 16544380524 scopus 로고    scopus 로고
    • Piecewise growth curve modeling approach for longitudinal prevention study.
    • Chou, C.-P., Yang, D., Pentz, M. A., & Hser, Y.-I. (2004). Piecewise growth curve modeling approach for longitudinal prevention study. Computational Statistics & Data Analysis, 46, 213-225. http://dx.doi .org/10.1016/S0167-9473(03)00149-X
    • (2004) Computational Statistics & Data Analysis , vol.46 , pp. 213-225
    • Chou, C.-P.1    Yang, D.2    Pentz, M.A.3    Hser, Y.-I.4
  • 7
    • 0030305195 scopus 로고    scopus 로고
    • Mixed-effects models in the study of individual differences with repeated measures data.
    • Cudeck, R. (1996). Mixed-effects models in the study of individual differences with repeated measures data. Multivariate Behavioral Research, 31, 371-403. http://dx.doi.org/10.1207/s15327906mbr3103_6
    • (1996) Multivariate Behavioral Research , vol.31 , pp. 371-403
    • Cudeck, R.1
  • 8
    • 84948873533 scopus 로고
    • Cross-validation of covariance structures.
    • Cudeck, R., & Browne, M. W. (1983). Cross-validation of covariance structures. Multivariate Behavioral Research, 18, 147-167. http://dx.doi .org/10.1207/s15327906mbr1802_2
    • (1983) Multivariate Behavioral Research , vol.18 , pp. 147-167
    • Cudeck, R.1    Browne, M.W.2
  • 9
    • 84879000700 scopus 로고    scopus 로고
    • A template for describing individual differences in longitudinal data, with application to the connection between learning and ability
    • J. R. Harring & G. R. Hancock (Eds.), Charlotte, NC: Information Age Publishing
    • Cudeck, R., & Codd, C. (2012). A template for describing individual differences in longitudinal data, with application to the connection between learning and ability. In J. R. Harring & G. R. Hancock (Eds.), Advances in longitudinal methods in the social and behavioral sciences (pp. 3-24). Charlotte, NC: Information Age Publishing.
    • (2012) Advances in longitudinal methods in the social and behavioral sciences , pp. 3-24
    • Cudeck, R.1    Codd, C.2
  • 10
    • 84921316675 scopus 로고    scopus 로고
    • Developing a random coefficient model for nonlinear repeated measures data
    • S.-M. Chow, E. Ferrer, & F. Hsieh (Eds.), New York, NY: Routledge
    • Cudeck, R., & Harring, J. R. (2010). Developing a random coefficient model for nonlinear repeated measures data. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 289-318). New York, NY: Routledge.
    • (2010) Statistical methods for modeling human dynamics: An interdisciplinary dialogue , pp. 289-318
    • Cudeck, R.1    Harring, J.R.2
  • 11
    • 85047671090 scopus 로고    scopus 로고
    • Multiphase mixed-effects models for repeated measures data.
    • Cudeck, R., & Klebe, K. J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7, 41-63. http://dx.doi .org/10.1037/1082-989X.7.1.41
    • (2002) Psychological Methods , vol.7 , pp. 41-63
    • Cudeck, R.1    Klebe, K.J.2
  • 12
    • 84879532581 scopus 로고    scopus 로고
    • Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation.
    • Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation. Psychological Methods, 18, 186-219. http://dx.doi.org/10.1037/a0031609
    • (2013) Psychological Methods , vol.18 , pp. 186-219
    • Depaoli, S.1
  • 13
    • 58749092694 scopus 로고    scopus 로고
    • A random change point model for assessing variability in repeated measures of cognitive function.
    • Dominicus, A., Ripatti, S., Pedersen, N. L., & Palmgren, J. (2008). A random change point model for assessing variability in repeated measures of cognitive function. Statistics in Medicine, 27, 5786-5798. http://dx.doi.org/10.1002/sim.3380
    • (2008) Statistics in Medicine , vol.27 , pp. 5786-5798
    • Dominicus, A.1    Ripatti, S.2    Pedersen, N.L.3    Palmgren, J.4
  • 14
    • 50849118196 scopus 로고    scopus 로고
    • Markov chain Monte Carlo: Can we trust the third significant figure?
    • Flegal, J., Haran, M., & Jones, G. (2008). Markov chain Monte Carlo: Can we trust the third significant figure? Statistical Science, 23, 250-260. http://dx.doi.org/10.1214/08-STS257
    • (2008) Statistical Science , vol.23 , pp. 250-260
    • Flegal, J.1    Haran, M.2    Jones, G.3
  • 15
    • 16144362183 scopus 로고    scopus 로고
    • Genetic and environmental contributions to the acquisition of a motor skill.
    • Fox, P. W., Hershberger, S. L., & Bouchard, T. J., Jr. (1996). Genetic and environmental contributions to the acquisition of a motor skill. Nature, 384, 356-358. http://dx.doi.org/10.1038/384356a0
    • (1996) Nature , vol.384 , pp. 356-358
    • Fox, P.W.1    Hershberger, S.L.2    Bouchard, T.J.3
  • 16
    • 82655179897 scopus 로고    scopus 로고
    • Is Bayes posterior just quick and dirty confidence?
    • Fraser, D. A. S. (2011). Is Bayes posterior just quick and dirty confidence? Statistical Science, 26, 299-316. http://dx.doi.org/10.1214/11-STS352
    • (2011) Statistical Science , vol.26 , pp. 299-316
    • Fraser, D.A.S.1
  • 17
    • 85065280764 scopus 로고    scopus 로고
    • Imposing structure on an unstructured environment: Ontogenetic changes in the ability to form rules of behavior under conditions of low environmental predictability
    • A. D. Friederici & R. Menzel (Eds.), Berlin: De Gruyter
    • Frensch, P. A., Lindenberger, U., & Kray, J. (1999). Imposing structure on an unstructured environment: Ontogenetic changes in the ability to form rules of behavior under conditions of low environmental predictability. In A. D. Friederici & R. Menzel (Eds.), Learning: Rule extraction and representation (pp. 139-162). Berlin: De Gruyter.
    • (1999) Learning: Rule extraction and representation , pp. 139-162
    • Frensch, P.A.1    Lindenberger, U.2    Kray, J.3
  • 19
    • 45149101637 scopus 로고    scopus 로고
    • Longitudinal associations between reading and mathematics achievement.
    • Grimm, K. J. (2008). Longitudinal associations between reading and mathematics achievement. Developmental Neuropsychology, 33, 410-426. http://dx.doi.org/10.1080/87565640801982486
    • (2008) Developmental Neuropsychology , vol.33 , pp. 410-426
    • Grimm, K.J.1
  • 20
    • 0034660084 scopus 로고    scopus 로고
    • A change point model for estimating the onset of cognitive decline in preclinical Alzheimer's disease.
    • Hall, C. B., Lipton, R. B., Sliwinski, M., & Stewart, W. F. (2000). A change point model for estimating the onset of cognitive decline in preclinical Alzheimer's disease. Statistics in Medicine, 19, 1555-1566. http://dx.doi.org/10.1002/(SICI)1097-0258(20000615/30)19:11/12_1555::AID-SIM445_3.0.CO;2-3
    • (2000) Statistics in Medicine , vol.19 , pp. 1555-1566
    • Hall, C.B.1    Lipton, R.B.2    Sliwinski, M.3    Stewart, W.F.4
  • 21
    • 0035977429 scopus 로고    scopus 로고
    • Estimation of bivariate measurements having different change points, with application to cognitive ageing.
    • Hall, C. B., Ying, J., Kuo, L., Sliwinski, M., Buschke, H., Katz, M., & Lipton, R. B. (2001). Estimation of bivariate measurements having different change points, with application to cognitive ageing. Statistics in Medicine, 20, 3695-3714. http://dx.doi.org/10.1002/sim.1113
    • (2001) Statistics in Medicine , vol.20 , pp. 3695-3714
    • Hall, C.B.1    Ying, J.2    Kuo, L.3    Sliwinski, M.4    Buschke, H.5    Katz, M.6    Lipton, R.B.7
  • 24
    • 33846960736 scopus 로고    scopus 로고
    • Fitting partially nonlinear random coefficient models as SEMs.
    • Harring, J. R., Cudeck, R., & du Toit, S. H. C. (2006). Fitting partially nonlinear random coefficient models as SEMs. Multivariate Behavioral Research, 41, 579-596. http://dx.doi.org/10.1207/s15327906mbr4104_7
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 579-596
    • Harring, J.R.1    Cudeck, R.2    Du Toit, S.H.C.3
  • 26
    • 33745601740 scopus 로고    scopus 로고
    • Local solutions in the estimation of growth mixture models.
    • Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11, 36-53. http://dx .doi.org/10.1037/1082-989X.11.1.36
    • (2006) Psychological Methods , vol.11 , pp. 36-53
    • Hipp, J.R.1    Bauer, D.J.2
  • 27
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling.
    • Jasra, A., Holmes, C., & Stephens, D. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20, 50 - 67. http://dx.doi.org/10.1214/088342305000000016
    • (2005) Statistical Science , vol.20 , pp. 50 - 67
    • Jasra, A.1    Holmes, C.2    Stephens, D.3
  • 28
    • 0141542576 scopus 로고    scopus 로고
    • A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties.
    • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child Development, 74, 834-850. http://dx.doi.org/10.1111/1467-8624.00571
    • (2003) Child Development , vol.74 , pp. 834-850
    • Jordan, N.C.1    Hanich, L.B.2    Kaplan, D.3
  • 30
    • 84886402003 scopus 로고    scopus 로고
    • Piecewise linear-linear latent growth mixture models with unknown knots.
    • Kohli, N., Harring, J. R., & Hancock, G. R. (2013). Piecewise linear-linear latent growth mixture models with unknown knots. Educational and Psychological Measurement, 73, 935-955. http://dx.doi.org/10.1177/0013164413496812
    • (2013) Educational and Psychological Measurement , vol.73 , pp. 935-955
    • Kohli, N.1    Harring, J.R.2    Hancock, G.R.3
  • 31
    • 0037821798 scopus 로고    scopus 로고
    • Evaluating academic outcomes of Head Start: An application of general growth mixture modeling.
    • Kreisman, M. B. (2003). Evaluating academic outcomes of Head Start: An application of general growth mixture modeling. Early Childhood Research Quarterly, 18, 238 -254. http://dx.doi.org/10.1016/S0885-2006(03)00027-9
    • (2003) Early Childhood Research Quarterly , vol.18 , pp. 238 -254
    • Kreisman, M.B.1
  • 32
    • 0005131014 scopus 로고    scopus 로고
    • Piecewise growth mixture modeling of adolescent alcohol use data.
    • Li, F., Duncan, T., Duncan, S., & Hops, H. (2001). Piecewise growth mixture modeling of adolescent alcohol use data. Structural Equation Modeling, 8, 175-204. http://dx.doi.org/10.1207/S15328007SEM0802_2
    • (2001) Structural Equation Modeling , vol.8 , pp. 175-204
    • Li, F.1    Duncan, T.2    Duncan, S.3    Hops, H.4
  • 33
    • 33846951724 scopus 로고    scopus 로고
    • Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters.
    • Lubke, G., & Muthén, B. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14, 26-47. http://dx.doi.org/10.1207/s15328007sem1401_2
    • (2007) Structural Equation Modeling , vol.14 , pp. 26-47
    • Lubke, G.1    Muthén, B.2
  • 35
    • 34249962132 scopus 로고
    • Latent curve analysis.
    • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122. http://dx.doi.org/10.1007/BF02294746
    • (1990) Psychometrika , vol.55 , pp. 107-122
    • Meredith, W.1    Tisak, J.2
  • 37
    • 0002031816 scopus 로고    scopus 로고
    • Latent variable mixture modeling
    • G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Erlbaum
    • Muthén, B. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1-33). Mahwah, NJ: Erlbaum.
    • (2001) New developments and techniques in structural equation modeling , pp. 1-33
    • Muthén, B.1
  • 38
    • 0013297364 scopus 로고    scopus 로고
    • Beyond SEM: General latent variable modeling.
    • Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81-117. http://dx.doi.org/10.2333/bhmk.29.81
    • (2002) Behaviormetrika , vol.29 , pp. 81-117
    • Muthén, B.1
  • 39
    • 0033917955 scopus 로고    scopus 로고
    • Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes.
    • Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882-891. http://dx.doi.org/10.1111/j.1530-0277.2000.tb02070.x
    • (2000) Alcoholism: Clinical and Experimental Research , vol.24 , pp. 882-891
    • Muthén, B.1    Muthén, L.K.2
  • 40
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm.
    • Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463-469. http://dx .doi.org/10.1111/j.0006-341X.1999.00463.x
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 41
  • 42
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling:A Monte Carlo simulation study.
    • Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling:A Monte Carlo simulation study. Structural Equation Modeling, 14, 535-569. http://dx.doi.org/10.1080/10705510701575396
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.L.1    Asparouhov, T.2    Muthén, B.3
  • 43
  • 44
    • 18844448988 scopus 로고    scopus 로고
    • Reinterpreting the development of reading skills.
    • Paris, S. G. (2005). Reinterpreting the development of reading skills. Reading Research Quarterly, 40, 184-202. http://dx.doi.org/10.1598/RRQ.40.2.3
    • (2005) Reading Research Quarterly , vol.40 , pp. 184-202
    • Paris, S.G.1
  • 45
    • 67650521193 scopus 로고    scopus 로고
    • JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling
    • March 20-22, Technische Universität Wien, Vienna, Austria
    • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. March 20-22, 2003, Technische Universität Wien, Vienna, Austria.
    • (2003) Proceedings of the 3rd International Workshop on Distributed Statistical Computing.
    • Plummer, M.1
  • 48
    • 0004085467 scopus 로고    scopus 로고
    • (2nd ed.). New York, NY: Springer
    • Robert, C. P. (2001). The Bayesian choice (2nd ed.). New York, NY: Springer.
    • (2001) The Bayesian choice
    • Robert, C.P.1
  • 49
    • 0000120766 scopus 로고
    • Estimating the dimension of a model.
    • Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464. http://dx.doi.org/10.1214/aos/1176344136
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.E.1
  • 50
    • 84871923430 scopus 로고    scopus 로고
    • Exploring gains in reading and mathematics among regular and exceptional students using growth curve modeling.
    • Shin, T., Davison, M. L., Long, J., Chan, C.-K., & Heistad, D. (2013). Exploring gains in reading and mathematics among regular and exceptional students using growth curve modeling. Learning and Individual Differences, 23, 92-100. http://dx.doi.org/10.1016/j.lindif.2012.10.002
    • (2013) Learning and Individual Differences , vol.23 , pp. 92-100
    • Shin, T.1    Davison, M.L.2    Long, J.3    Chan, C.-K.4    Heistad, D.5
  • 54
    • 78651288714 scopus 로고    scopus 로고
    • Addressing the problem of switched class labels in latent variable mixture model simulation studies.
    • Tueller, S. J., Drotar, S., & Lubke, G. H. (2011). Addressing the problem of switched class labels in latent variable mixture model simulation studies. Structural Equation Modeling, 18, 110-131. http://dx.doi.org/10.1080/10705511.2011.534695
    • (2011) Structural Equation Modeling , vol.18 , pp. 110-131
    • Tueller, S.J.1    Drotar, S.2    Lubke, G.H.3
  • 55
    • 41149108683 scopus 로고    scopus 로고
    • A simulation study comparison of Bayesian estimation with conventional methods for estimating unknown change points.
    • Wang, L., & McArdle, J. J. (2008). A simulation study comparison of Bayesian estimation with conventional methods for estimating unknown change points. Structural Equation Modeling, 15, 52-74. http://dx.doi .org/10.1080/10705510701758265
    • (2008) Structural Equation Modeling , vol.15 , pp. 52-74
    • Wang, L.1    McArdle, J.J.2
  • 56
    • 66549120967 scopus 로고    scopus 로고
    • Bayesian mixture labeling by highest posterior density.
    • Yao, W., & Lindsay, B. G. (2009). Bayesian mixture labeling by highest posterior density. Journal of the American Statistical Association, 104, 758-767. http://dx.doi.org/10.1198/jasa.2009.0237
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 758-767
    • Yao, W.1    Lindsay, B.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.