메뉴 건너뛰기




Volumn 19, Issue 2, 2012, Pages 178-203

Measurement and Structural Model Class Separation in Mixture CFA: ML/EM Versus MCMC

Author keywords

Bayesian estimation; class separation; confirmatory factory analysis; finite mixture models; parameter recovery

Indexed keywords


EID: 84861637571     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705511.2012.659614     Document Type: Article
Times cited : (24)

References (28)
  • 5
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through {B}ayesian sampling
    • Diebolt, J. and Robert, C. P. 1994. Estimation of finite mixture distributions through {B}ayesian sampling. Journal of the Royal Statistical Society, 56: 363-375.
    • (1994) Journal of the Royal Statistical Society , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 6
    • 41149108168 scopus 로고    scopus 로고
    • The impact of misspecifying class-specific residual variances in growth mixture models
    • Enders, C. K. and Tofighi, D. 2008. The impact of misspecifying class-specific residual variances in growth mixture models. Structural Equation Modeling, 15: 75-95.
    • (2008) Structural Equation Modeling , vol.15 , pp. 75-95
    • Enders, C.K.1    Tofighi, D.2
  • 7
  • 8
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • In: Gilks W. R., Richardson S., Spiegelhalter D. J., editors New York, NY: Chapman & Hall
    • Gelman, A. 1996. "Inference and monitoring convergence.". In Markov chain {Monte {C}arlo in practice} Edited by: Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. 131-143. New York, NY: Chapman & Hall.
    • (1996) Markov chain {Monte {C}arlo in practice} , pp. 131-143
    • Gelman, A.1
  • 9
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D. B. 1992a. Inference from iterative simulation using multiple sequences. Statistical Science, 7: 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 10
    • 0001032162 scopus 로고
    • A single series from the {G}ibbs sampler provides a false sense of security
    • In: Bernardo J. M., Berger J. O., Dawid A. P., Smith A. F. M., editors Oxford, UK: Oxford University Press
    • Gelman, A. and Rubin, D. B. 1992b. "A single series from the {G}ibbs sampler provides a false sense of security.". In Bayesian Statistics 4 Edited by: Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. 625-631. Oxford, UK: Oxford University Press.
    • (1992) Bayesian Statistics 4 , pp. 625-631
    • Gelman, A.1    Rubin, D.B.2
  • 13
    • 0001218443 scopus 로고
    • Non-informative priors (with discussion)
    • In: Bernardo J. M., Berger J. O., Dawid A. P., Smith A. F. M., editors Oxford, UK: Oxford University Press
    • Ghosh, J. K. and Mukerjee, R. 1992. "Non-informative priors (with discussion).". In Bayesian statistics 4 Edited by: Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. 195-210. Oxford, UK: Oxford University Press.
    • (1992) Bayesian statistics 4 , pp. 195-210
    • Ghosh, J.K.1    Mukerjee, R.2
  • 14
    • 0031287762 scopus 로고    scopus 로고
    • Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity
    • Jedidi, K., Jagpal, H. S. and DeSarbo, W. S. 1997. Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16: 39-59.
    • (1997) Marketing Science , vol.16 , pp. 39-59
    • Jedidi, K.1    Jagpal, H.S.2    DeSarbo, W.S.3
  • 15
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? {A} simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R. and Jones, D. R. 2005. How vague is vague? {A} simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24: 2401-2428.
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 17
    • 17444413035 scopus 로고    scopus 로고
    • Investigating population heterogeneity with factor mixture models
    • Lubke, G. H. and Muthén, B. O. 2005. Investigating population heterogeneity with factor mixture models. Psychological Methods, 10: 21-39.
    • (2005) Psychological Methods , vol.10 , pp. 21-39
    • Lubke, G.H.1    Muthén, B.O.2
  • 18
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-A Bayesian modeling framework: Concepts, structure, and extensibility
    • Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. 2000. WinBUGS-A Bayesian modeling framework: Concepts, structure, and extensibility. Statistics and Computing, 10: 325-337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 20
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: {G}rowth mixture modeling and related techniques for longitudinal data
    • In: Kaplan D., editors Newbury Park, CA: Sage
    • Muthén, B. O. 2004. "Latent variable analysis: {G}rowth mixture modeling and related techniques for longitudinal data.". In Handbook of quantitative methodology for the social sciences Edited by: Kaplan, D. 345-368. Newbury Park, CA: Sage.
    • (2004) Handbook of quantitative methodology for the social sciences , pp. 345-368
    • Muthén, B.O.1
  • 21
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the {EM} algorithm
    • Muthén, B. O. and Shedden, K. 1999. Finite mixture modeling with mixture outcomes using the {EM} algorithm. Biometrics, 55: 463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.O.1    Shedden, K.2
  • 23
    • 0032392354 scopus 로고    scopus 로고
    • Gibbs sampling with diffuse proper priors: {A} valid approach to data-driven inference?
    • Natarajan, R. and Mc{C}ulloch, C. E. 1998. Gibbs sampling with diffuse proper priors: {A} valid approach to data-driven inference?. Journal of Computational and Graphical Statistics, 7: 267-277.
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , pp. 267-277
    • Natarajan, R.1    McCulloch, C.E.2
  • 25
    • 11844261472 scopus 로고    scopus 로고
    • Experiences with {M}arkov chain {M}onte {C}arlo convergence assessment in two psychometric examples
    • Sinharay, S. 2004. Experiences with {M}arkov chain {M}onte {C}arlo convergence assessment in two psychometric examples. Journal of Educational and Behavioral Statistics, 29: 461-488.
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , pp. 461-488
    • Sinharay, S.1
  • 26
    • 41149175664 scopus 로고    scopus 로고
    • Identifying the correct number of classes in growth mixture models
    • In: Hancock G. R., Samuelson K. M., editors Charlotte, NC: Information Age
    • Tofighi, D. and Enders, C. K. 2008. "Identifying the correct number of classes in growth mixture models.". In Advances in latent variable mixture models Edited by: Hancock, G. R. and Samuelson, K. M. 317-341. Charlotte, NC: Information Age.
    • (2008) Advances in latent variable mixture models , pp. 317-341
    • Tofighi, D.1    Enders, C.K.2
  • 28
    • 77951655116 scopus 로고    scopus 로고
    • Evaluation of structural equation mixture models: {P}arameter estimates and correct class assignment
    • Tueller, S. and Lubke, G. 2010. Evaluation of structural equation mixture models: {P}arameter estimates and correct class assignment. Structural Equation Modeling, 17: 165-192.
    • (2010) Structural Equation Modeling , vol.17 , pp. 165-192
    • Tueller, S.1    Lubke, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.