메뉴 건너뛰기




Volumn 59, Issue 6, 2017, Pages 1261-1276

Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking

Author keywords

Calibration; Discrimination; Prognostic modeling; Random effects; Risk prediction

Indexed keywords

DECISION MAKING; DIAGNOSIS; FORECASTING; RANDOM PROCESSES; RISK ASSESSMENT;

EID: 85033775244     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201600238     Document Type: Article
Times cited : (106)

References (31)
  • 2
    • 84991498266 scopus 로고    scopus 로고
    • Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures
    • Andrinopoulou, E., & Rizopoulos, D. (2016). Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures. Statistics in Medicine, 35, 4813–4823.
    • (2016) Statistics in Medicine , vol.35 , pp. 4813-4823
    • Andrinopoulou, E.1    Rizopoulos, D.2
  • 4
    • 79957992223 scopus 로고    scopus 로고
    • Re-operations for aortic allograft root failure: Experience from a 21-year single-center prospective follow-up study
    • Bekkers, J., Klieverik, L., Raap, G., Takkenberg, J., & Bogers, A. (2011). Re-operations for aortic allograft root failure: Experience from a 21-year single-center prospective follow-up study. European Journal of Cardio-Thoracic Surgery, 40, 35–42.
    • (2011) European Journal of Cardio-Thoracic Surgery , vol.40 , pp. 35-42
    • Bekkers, J.1    Klieverik, L.2    Raap, G.3    Takkenberg, J.4    Bogers, A.5
  • 5
    • 84926006939 scopus 로고    scopus 로고
    • Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks
    • Blanche, P., Proust-Lima, C., Loubére, L., Berr, C., Dartigues, J., & Jacqmin-Gadda, H. (2015). Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics, 71, 102–113.
    • (2015) Biometrics , vol.71 , pp. 102-113
    • Blanche, P.1    Proust-Lima, C.2    Loubére, L.3    Berr, C.4    Dartigues, J.5    Jacqmin-Gadda, H.6
  • 6
    • 33846223169 scopus 로고    scopus 로고
    • Consistent estimation of the expected Brier score in general survival models with right-censored event times
    • Gerds, T., & Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal, 48, 1029–1040.
    • (2006) Biometrical Journal , vol.48 , pp. 1029-1040
    • Gerds, T.1    Schumacher, M.2
  • 7
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell, F., Kerry, L., & Mark, D. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361–387.
    • (1996) Statistics in Medicine , vol.15 , pp. 361-387
    • Harrell, F.1    Kerry, L.2    Mark, D.3
  • 8
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1, 465–480.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 9
    • 0344097453 scopus 로고    scopus 로고
    • Identification and efficacy of longitudinal markers for survival
    • Henderson, R., Diggle, P., & Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. Biostatistics, 3, 33–50.
    • (2002) Biostatistics , vol.3 , pp. 33-50
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 11
    • 0000457417 scopus 로고
    • A framework for consistent prediction rules based on markers
    • Jewell, N., & Nielsen, J. (1993). A framework for consistent prediction rules based on markers. Biometrika, 80, 153–164.
    • (1993) Biometrika , vol.80 , pp. 153-164
    • Jewell, N.1    Nielsen, J.2
  • 15
    • 84882271493 scopus 로고    scopus 로고
    • Landmark risk prediction of residual life for breast cancer survival
    • Parast, L., & Cai, T. (2013). Landmark risk prediction of residual life for breast cancer survival. Statistics in Medicine, 32, 3459–3471.
    • (2013) Statistics in Medicine , vol.32 , pp. 3459-3471
    • Parast, L.1    Cai, T.2
  • 16
    • 84871945569 scopus 로고    scopus 로고
    • Landmark prediction of long term survival incorporating short term event time information
    • Parast, L., Cheng, S.-C., & Cai, T. (2012). Landmark prediction of long term survival incorporating short term event time information. Journal of the American Statistical Association, 107, 1492–1501.
    • (2012) Journal of the American Statistical Association , vol.107 , pp. 1492-1501
    • Parast, L.1    Cheng, S.-C.2    Cai, T.3
  • 17
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • Pencina, M., D'Agostino, Sr, R., D'Agostino, Jr, R., & Vasan, R. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine, 27, 157–172.
    • (2008) Statistics in Medicine , vol.27 , pp. 157-172
    • Pencina, M.1    D'Agostino, R.2    D'Agostino, R.3    Vasan, R.4
  • 18
    • 70149108170 scopus 로고    scopus 로고
    • Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach
    • Proust-Lima, C., & Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics, 10, 535–549.
    • (2009) Biostatistics , vol.10 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.2
  • 19
    • 77955157844 scopus 로고    scopus 로고
    • JM: An R package for the joint modelling of longitudinal and time-to-event data
    • Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software, 35(9), 1–33.
    • (2010) Journal of Statistical Software , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 20
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics, 67, 819–829.
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 22
    • 85004061522 scopus 로고    scopus 로고
    • The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC
    • Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. Journal of Statistical Software, 72(7), 1–45.
    • (2016) Journal of Statistical Software , vol.72 , Issue.7 , pp. 1-45
    • Rizopoulos, D.1
  • 23
    • 84919784965 scopus 로고    scopus 로고
    • Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging
    • Rizopoulos, D., Hatfield, L., Carlin, B., & Takkenberg, J. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. Journal of the American Statistical Association, 109, 1385–1397.
    • (2014) Journal of the American Statistical Association , vol.109 , pp. 1385-1397
    • Rizopoulos, D.1    Hatfield, L.2    Carlin, B.3    Takkenberg, J.4
  • 24
    • 0034024003 scopus 로고    scopus 로고
    • Predictive accuracy and explained variation in Cox regression
    • Schemper, M., & Henderson, R. (2000). Predictive accuracy and explained variation in Cox regression. Biometrics, 56, 249–255.
    • (2000) Biometrics , vol.56 , pp. 249-255
    • Schemper, M.1    Henderson, R.2
  • 25
    • 79952275759 scopus 로고    scopus 로고
    • Measures of prediction error for survival data with longitudinal covariates
    • Schoop, R., Schumacher, M., & Graf, E. (2011). Measures of prediction error for survival data with longitudinal covariates. Biometrical Journal, 53, 275–293.
    • (2011) Biometrical Journal , vol.53 , pp. 275-293
    • Schoop, R.1    Schumacher, M.2    Graf, E.3
  • 26
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: An overview
    • Tsiatis, A., & Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica, 14, 809–834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.1    Davidian, M.2
  • 27
    • 34250736743 scopus 로고    scopus 로고
    • Evaluating prediction rules for t-year survivors with censored regression models
    • Uno, H., Cai, T., Tian, L., & Wei, L. (2007). Evaluating prediction rules for t-year survivors with censored regression models. Journal of the American Statistical Association, 102, 527–537.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 527-537
    • Uno, H.1    Cai, T.2    Tian, L.3    Wei, L.4
  • 28
    • 33847345021 scopus 로고    scopus 로고
    • Dynamic prediction by landmarking in event history analysis
    • van Houwelingen, H. (2007). Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 34, 70–85.
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 70-85
    • van Houwelingen, H.1
  • 30
    • 42349110012 scopus 로고    scopus 로고
    • Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model
    • Yu, M., Taylor, J., & Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. Journal of the American Statistical Association, 103, 178–187.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 178-187
    • Yu, M.1    Taylor, J.2    Sandler, H.3
  • 31
    • 20744432583 scopus 로고    scopus 로고
    • Partly conditional survival models for longitudinal data
    • Zheng, Y., & Heagerty, P. (2005). Partly conditional survival models for longitudinal data. Biometrics, 61, 379–391.
    • (2005) Biometrics , vol.61 , pp. 379-391
    • Zheng, Y.1    Heagerty, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.