메뉴 건너뛰기




Volumn 72, Issue , 2016, Pages

The R package jmbayes for fitting joint models for longitudinal and time-to-event data using MCMC

Author keywords

Dynamic predictions; Mixed models; Random effects; Survival analysis; Time varying covariates; Validation

Indexed keywords


EID: 85004061522     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/jss.v072.i07     Document Type: Article
Times cited : (186)

References (53)
  • 2
    • 30944433977 scopus 로고    scopus 로고
    • A Time-Dependent Discrimination Index for Survival Data
    • Antolini L, Boracchi P, Biganzoli E (2005). “A Time-Dependent Discrimination Index for Survival Data.” Statistics in Medicine, 24, 3927-3944. doi: 10.1002/sim.2427.
    • (2005) Statistics in Medicine , vol.24 , pp. 3927-3944
    • Antolini, L.1    Boracchi, P.2    Biganzoli, E.3
  • 3
    • 15044356987 scopus 로고    scopus 로고
    • A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival
    • Brown E, Ibrahim J, DeGruttola V (2005). “A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival.” Biometrics, 61, 64-73. doi: 10.1111/j.0006-341x. 2005.030929.x.
    • (2005) Biometrics , vol.61 , pp. 64-73
    • Brown, E.1    Ibrahim, J.2    DeGruttola, V.3
  • 4
    • 84865394029 scopus 로고    scopus 로고
    • Assessing the Association between Trends in a Biomarker and Risk of Event with an Application in Pediatric HIV/AIDS
    • Brown ER (2009). “Assessing the Association between Trends in a Biomarker and Risk of Event with an Application in Pediatric HIV/AIDS.” The Annals of Applied Statistics, 3, 1163-1182. doi: 10.1214/09-aoas251.
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 1163-1182
    • Brown, E.R.1
  • 8
    • 25444532788 scopus 로고    scopus 로고
    • Flexible Smoothing with B-Splines and Penalties
    • Eilers P, Marx B (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical Science, 11, 89-121. doi: 10.1214/ss/1038425655.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.1    Marx, B.2
  • 9
    • 33846223169 scopus 로고    scopus 로고
    • Consistent Estimation of the Expected Brier Score in General Survival Models with Right-Censored Event times
    • Gerds T, Schumacher M (2006). “Consistent Estimation of the Expected Brier Score in General Survival Models with Right-Censored Event times.” Biometrical Journal, 48, 1029-1040. doi: 10.1002/bimj.200610301.
    • (2006) Biometrical Journal , vol.48 , pp. 1029-1040
    • Gerds, T.1    Schumacher, M.2
  • 10
    • 1342289473 scopus 로고    scopus 로고
    • Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages
    • Guo X, Carlin B (2004). “Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages.” The American Statistician, 58, 16-24. doi: 10.1198/0003130042854.
    • (2004) The American Statistician , vol.58 , pp. 16-24
    • Guo, X.1    Carlin, B.2
  • 12
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors
    • Harrell F, Kerry L, Mark D (1996). “Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors.” Statistics in Medicine, 15, 361-387. doi: 10.1002/(sici)1097-0258(19960229)15: 4<361:: aid-sim168>3.0.co;2-4.
    • (1996) Statistics in Medicine , vol.15 , pp. 361-387
    • Harrell, F.1    Kerry, L.2    Mark, D.3
  • 13
    • 15044357936 scopus 로고    scopus 로고
    • Survival Model Predictive Accuracy and ROC Curves
    • Heagerty P, Zheng Y (2005). “Survival Model Predictive Accuracy and ROC Curves.” Biometrics, 61, 92-105. doi: 10.1111/j.0006-341x.2005.030814.x.
    • (2005) Biometrics , vol.61 , pp. 92-105
    • Heagerty, P.1    Zheng, Y.2
  • 14
    • 0000710136 scopus 로고    scopus 로고
    • Joint Modelling of Longitudinal Measurements and Event Time Data
    • Henderson R, Diggle P, Dobson A (2000). “Joint Modelling of Longitudinal Measurements and Event Time Data.” Biostatistics, 1, 465-480. doi: 10.1093/biostatistics/1.4.465.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 15
    • 0344097453 scopus 로고    scopus 로고
    • Identification and Efficacy of Longitudinal Markers for Survival
    • Henderson R, Diggle P, Dobson A (2002). “Identification and Efficacy of Longitudinal Markers for Survival.” Biostatistics, 3, 33-50. doi: 10.1093/biostatistics/3.1.33.
    • (2002) Biostatistics , vol.3 , pp. 33-50
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 21
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS - A Bayesian Modelling Framework: Concepts, Structure, and Extensibility
    • Lunn D, Thomas A, Best NG, Spiegelhalter DJ (2000). “WinBUGS - A Bayesian Modelling Framework: Concepts, Structure, and Extensibility.” Statistics and Computing, 10(4), 325-337.
    • (2000) Statistics and Computing , vol.10 , Issue.4 , pp. 325-337
    • Lunn, D.1    Thomas, A.2    Best, N.G.3    Spiegelhalter, D.J.4
  • 23
    • 0028339925 scopus 로고
    • Primary Biliary Cirrhosis: Prediction of Short-Term Survival Based on Repeated Patient Visits
    • Murtaugh P, Dickson E, Van Dam G, Malincho M, Grambsch P, Langworthy A, Gips C (1994). “Primary Biliary Cirrhosis: Prediction of Short-Term Survival Based on Repeated Patient Visits.” Hepatology, 20, 126-134. doi: 10.1002/hep.1840200120.
    • (1994) Hepatology , vol.20 , pp. 126-134
    • Murtaugh, P.1    Dickson, E.2    Van Dam, G.3    Malincho, M.4    Grambsch, P.5    Langworthy, A.6    Gips, C.7
  • 24
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the Added Predictive Ability of a New Marker: From Area under the ROC Curve to Reclassification and beyond
    • Pencina MJ, D’Agostino Sr RB, Vasan RS (2008). “Evaluating the Added Predictive Ability of a New Marker: From Area under the ROC Curve to Reclassification and beyond.” Statistics in Medicine, 27(2), 157-172. doi: 10.1002/sim.2976.
    • (2008) Statistics in Medicine , vol.27 , Issue.2 , pp. 157-172
    • Pencina, M.J.1    D’Agostino, R.B.2    Vasan, R.S.3
  • 28
    • 41149087694 scopus 로고    scopus 로고
    • coda: Convergence Diagnosis and Output Analysis for MCMC
    • URL
    • Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output Analysis for MCMC.” R News, 6(1), 7-11. URL http://CRAN.R-project.org/doc/Rnews/.
    • (2006) R News , vol.6 , Issue.1 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 30
    • 84964927929 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria. URL
    • R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
    • (2016) R: A Language and Environment for Statistical Computing
  • 31
    • 77955157844 scopus 로고    scopus 로고
    • JM: An R Package for the Joint Modelling of Longitudinal and Timeto-Event Data
    • Rizopoulos D (2010). “JM: An R Package for the Joint Modelling of Longitudinal and Timeto-Event Data.” Journal of Statistical Software, 35(9), 1-33. doi: 10.18637/jss.v035.i09.
    • (2010) Journal of Statistical Software , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 32
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data
    • Rizopoulos D (2011). “Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data.” Biometrics, 67, 819-829. doi: 10.1111/j. 1541-0420.2010.01546.x.
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 35
    • 84919784965 scopus 로고    scopus 로고
    • Combining Dynamic Predictions from Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging
    • Rizopoulos D, Hatfield L, Carlin B, Takkenberg J (2014). “Combining Dynamic Predictions from Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging.” Journal of the American Statistical Association, 109, 1385-1397. doi: 10.1080/01621459.2014.931236.
    • (2014) Journal of the American Statistical Association , vol.109 , pp. 1385-1397
    • Rizopoulos, D.1    Hatfield, L.2    Carlin, B.3    Takkenberg, J.4
  • 36
    • 84892599917 scopus 로고    scopus 로고
    • Introduction to the Special Issue on Joint Modelling Techniques
    • Rizopoulos D, Lesaffre E (2014). “Introduction to the Special Issue on Joint Modelling Techniques.” Statistical Methods in Medical Research, 23, 3-10. doi: 10.1177/0962280212445800.
    • (2014) Statistical Methods in Medical Research , vol.23 , pp. 3-10
    • Rizopoulos, D.1    Lesaffre, E.2
  • 37
    • 84959881079 scopus 로고    scopus 로고
    • Personalized Screening Intervals for Biomarkers Using Joint Models for Longitudinal and Survival Data
    • Rizopoulos D, Taylor JMG, van Rosmalen J, Steyerberg EW, Takkenberg J (2016). “Personalized Screening Intervals for Biomarkers Using Joint Models for Longitudinal and Survival Data.” Biostatistics, 17, 149-164. doi: 10.1093/biostatistics/kxv031.
    • (2016) Biostatistics , vol.17 , pp. 149-164
    • Rizopoulos, D.1    Taylor, J.M.G.2    van Rosmalen, J.3    Steyerberg, E.W.4    Takkenberg, J.5
  • 38
    • 84991436649 scopus 로고    scopus 로고
    • R package version 0.13.2, URL
    • RStudio Inc (2016). shiny: Web Application Framework for R. R package version 0.13.2, URL http://CRAN.R-project.org/package=shiny.
    • (2016) shiny: Web Application Framework for R
  • 40
    • 33645354926 scopus 로고    scopus 로고
    • SAS Institute Inc., Cary. URL
    • SAS Institute Inc (2013). The SAS System, Version 9.4. SAS Institute Inc., Cary. URL http://www.sas.com/.
    • (2013) The SAS System, Version 9.4
  • 41
    • 0034024003 scopus 로고    scopus 로고
    • Predictive Accuracy and Explained Variation in Cox Regression
    • Schemper M, Henderson R (2000). “Predictive Accuracy and Explained Variation in Cox Regression.” Biometrics, 56, 249-255. doi: 10.1111/j.0006-341x.2000.00249.x.
    • (2000) Biometrics , vol.56 , pp. 249-255
    • Schemper, M.1    Henderson, R.2
  • 44
    • 70449337834 scopus 로고    scopus 로고
    • Flexible Modeling of the Cumulative Effects of Time-Dependent Exposures on the Hazard
    • Sylvestre MP, Abrahamowicz M (2009). “Flexible Modeling of the Cumulative Effects of Time-Dependent Exposures on the Hazard.” Statistics in Medicine, 28, 3437-3453. doi: 10.1002/sim.3701.
    • (2009) Statistics in Medicine , vol.28 , pp. 3437-3453
    • Sylvestre, M.P.1    Abrahamowicz, M.2
  • 48
    • 85044218137 scopus 로고    scopus 로고
    • OpenBUGS Foundation. URL
    • Thomas A (2014). OpenBUGS Version 3.2.3. OpenBUGS Foundation. URL http://www. openbugs.net/.
    • (2014) OpenBUGS Version 3.2.3
    • Thomas, A.1
  • 49
    • 84950871099 scopus 로고
    • Accurate Approximations for Posterior Moments and Marginal Densities
    • Tierney L, Kadane J (1986). “Accurate Approximations for Posterior Moments and Marginal Densities.” Journal of the American Statistical Association, 81, 82-86. doi: 10.1080/01621459.1986.10478240.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.2
  • 50
    • 8644246036 scopus 로고    scopus 로고
    • Joint Modeling of Longitudinal and Time-to-Event Data: An Overview
    • Tsiatis A, Davidian M (2004). “Joint Modeling of Longitudinal and Time-to-Event Data: An Overview.” Statistica Sinica, 14, 809-834. doi: 10.1111/j.0006-341x.2002.00742.x.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.1    Davidian, M.2
  • 52
    • 56049124129 scopus 로고    scopus 로고
    • Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data - A Two Stage Regression Calibration Approach
    • Ye W, Lin X, Taylor JMG (2008). “Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data - A Two Stage Regression Calibration Approach.” Biometrics, 64, 1238-1246. doi: 10.1111/j.1541-0420.2007.00983.x.
    • (2008) Biometrics , vol.64 , pp. 1238-1246
    • Ye, W.1    Lin, X.2    Taylor, J.M.G.3
  • 53
    • 42349110012 scopus 로고    scopus 로고
    • Individualized Prediction in Prostate Cancer Studies Using a Joint Longitudinal-Survival-Cure Model
    • Yu M, Taylor JMG, Sandler H (2008). “Individualized Prediction in Prostate Cancer Studies Using a Joint Longitudinal-Survival-Cure Model.” Journal of the American Statistical Association, 103, 178-187. doi: 10.1198/016214507000000400.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 178-187
    • Yu, M.1    Taylor, J.M.G.2    Sandler, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.