메뉴 건너뛰기




Volumn 26, Issue 4, 2017, Pages 1787-1801

Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data

Author keywords

individualized risk predictions; joint models; longitudinal data analysis; Model averaging; survival analysis

Indexed keywords

AVERAGING; CLINICAL STUDY; DATA ANALYSIS; FEMALE; FOLLOW UP; HUMAN; JOINT; MALE; MODEL; PREDICTION; SURVIVAL ANALYSIS; UNCERTAINTY; BAYES THEOREM; HEART VALVE; LONGITUDINAL STUDY; MIDDLE AGED; RISK; STATISTICAL MODEL; TRANSPLANTATION;

EID: 85027689346     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280215588340     Document Type: Article
Times cited : (35)

References (20)
  • 1
    • 14144254555 scopus 로고    scopus 로고
    • Individualized predictions of disease progression following radiation therapy for prostate cancer
    • Taylor J, Yu M, Sandler H,. Individualized predictions of disease progression following radiation therapy for prostate cancer. J Clin Oncol 2005; 23: 816-825.
    • (2005) J Clin Oncol , vol.23 , pp. 816-825
    • Taylor, J.1    Yu, M.2    Sandler, H.3
  • 2
    • 38149135632 scopus 로고    scopus 로고
    • A joint latent class change point model to improve the prediction of time to graft failure
    • Garre F, Zwinderman A, Geskus R, et al. A joint latent class change point model to improve the prediction of time to graft failure. J R Stat Soc, Ser A 2008; 171: 299-308.
    • (2008) J R Stat Soc, ser A , vol.171 , pp. 299-308
    • Garre, F.1    Zwinderman, A.2    Geskus, R.3
  • 3
    • 42349110012 scopus 로고    scopus 로고
    • Individualized prediction in prostate cancer studies using a joint longitudinal survival-cure model
    • Yu M, Taylor J, Sandler H,. Individualized prediction in prostate cancer studies using a joint longitudinal survival-cure model. J Am Stat Assoc 2008; 103: 178-187.
    • (2008) J Am Stat Assoc , vol.103 , pp. 178-187
    • Yu, M.1    Taylor, J.2    Sandler, H.3
  • 4
    • 70149108170 scopus 로고    scopus 로고
    • Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach
    • Proust-Lima C, Taylor J,. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach. Biostatistics 2009; 10: 535-549.
    • (2009) Biostatistics , vol.10 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.2
  • 5
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos D,. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 2011; 67: 819-829.
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 6
    • 79957992223 scopus 로고    scopus 로고
    • Re-operations for aortic allograft root failure: Experience from a 21-year single-center prospective follow-up study
    • Bekkers J, Klieverik L, Raap G, et al. Re-operations for aortic allograft root failure: experience from a 21-year single-center prospective follow-up study. Eur J Cardio-Thorac Surg 2011; 40: 35-42.
    • (2011) Eur J Cardio-Thorac Surg , vol.40 , pp. 35-42
    • Bekkers, J.1    Klieverik, L.2    Raap, G.3
  • 7
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn M, Tsiatis A,. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53: 330-339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.1    Tsiatis, A.2
  • 8
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: An overview
    • Tsiatis A, Davidian M,. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14: 809-834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.1    Davidian, M.2
  • 10
    • 84903818599 scopus 로고    scopus 로고
    • Joint modeling of two longitudinal outcomes and competing risk data
    • Andrinopoulou ER, Rizopoulos D, Takkenberg J, et al. Joint modeling of two longitudinal outcomes and competing risk data. Stat Med 2014; 33: 3167-3178.
    • (2014) Stat Med , vol.33 , pp. 3167-3178
    • Andrinopoulou, E.R.1    Rizopoulos, D.2    Takkenberg, J.3
  • 11
    • 0001259111 scopus 로고    scopus 로고
    • Bayesian model averaging: A tutorial
    • Hoeting J, Madigan D, Raftery A, et al. Bayesian model averaging: a tutorial. Stat Sci 1999; 14: 382-417.
    • (1999) Stat Sci , vol.14 , pp. 382-417
    • Hoeting, J.1    Madigan, D.2    Raftery, A.3
  • 12
    • 84919784965 scopus 로고    scopus 로고
    • Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging
    • Rizopoulos D, Hatfield L, Carlin B, et al. Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. J Am Stat Assoc 2014; 109: 1385-1397.
    • (2014) J Am Stat Assoc , vol.109 , pp. 1385-1397
    • Rizopoulos, D.1    Hatfield, L.2    Carlin, B.3
  • 14
    • 84865394029 scopus 로고    scopus 로고
    • Assessing the association between trends in a biomarker and risk of event with an application in pediatric HIV/AIDS
    • Brown E,. Assessing the association between trends in a biomarker and risk of event with an application in pediatric HIV/AIDS. Ann Appl Stat 2009; 3: 1163-1182.
    • (2009) Ann Appl Stat , vol.3 , pp. 1163-1182
    • Brown, E.1
  • 15
    • 79955847737 scopus 로고    scopus 로고
    • A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • Rizopoulos D, Ghosh P,. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med 2011; 30: 1366-1380.
    • (2011) Stat Med , vol.30 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 18
    • 60449118130 scopus 로고    scopus 로고
    • A note on cause-specific residual life
    • Jeong J, Fine J,. A note on cause-specific residual life. Biometrika 2009; 96: 237-242.
    • (2009) Biometrika , vol.96 , pp. 237-242
    • Jeong, J.1    Fine, J.2
  • 19
    • 22144490275 scopus 로고    scopus 로고
    • On criteria for evaluating models of absolute risk
    • Gail M, Pfeiffer R,. On criteria for evaluating models of absolute risk. Biostatistics 2005; 6: 227-239.
    • (2005) Biostatistics , vol.6 , pp. 227-239
    • Gail, M.1    Pfeiffer, R.2
  • 20
    • 78851470956 scopus 로고    scopus 로고
    • Quantifying the predictive accuracy of time-to-event models in the presence of competing risks
    • Schoop R, Beyersmann J, Schumacher M, et al. Quantifying the predictive accuracy of time-to-event models in the presence of competing risks. Biom J 2011; 53: 88-112.
    • (2011) Biom J , vol.53 , pp. 88-112
    • Schoop, R.1    Beyersmann, J.2    Schumacher, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.