-
1
-
-
4344577088
-
Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents
-
Achanta G, Huang P (2004) Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 64, 6233–6239.
-
(2004)
Cancer Res.
, vol.64
, pp. 6233-6239
-
-
Achanta, G.1
Huang, P.2
-
2
-
-
27144488229
-
Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma
-
Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P (2005) Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J. 24, 3482–3492.
-
(2005)
EMBO J.
, vol.24
, pp. 3482-3492
-
-
Achanta, G.1
Sasaki, R.2
Feng, L.3
Carew, J.S.4
Lu, W.5
Pelicano, H.6
Keating, M.J.7
Huang, P.8
-
3
-
-
34250647400
-
Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies
-
Barja G (2007) Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res. 10, 215–224.
-
(2007)
Rejuvenation Res.
, vol.10
, pp. 215-224
-
-
Barja, G.1
-
4
-
-
84860206827
-
Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-B
-
Barone E, Cenini G, Sultana R, Di Domenico F, Fiorini A, Perluigi M, Noel T, Wang C, Mancuso C, St Clair DK, Butterfield DA (2012) Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-B. Antioxid. Redox Signal. 16, 1407–1420.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 1407-1420
-
-
Barone, E.1
Cenini, G.2
Sultana, R.3
Di Domenico, F.4
Fiorini, A.5
Perluigi, M.6
Noel, T.7
Wang, C.8
Mancuso, C.9
St Clair, D.K.10
Butterfield, D.A.11
-
5
-
-
84883585280
-
Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase
-
Bergeaud M, Mathieu L, Guillaume A, Moll UM, Mignotte B, Le Floch N, Vayssiere JL, Rincheval V (2013) Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase. Cell Cycle 12, 2781–2793.
-
(2013)
Cell Cycle
, vol.12
, pp. 2781-2793
-
-
Bergeaud, M.1
Mathieu, L.2
Guillaume, A.3
Moll, U.M.4
Mignotte, B.5
Le Floch, N.6
Vayssiere, J.L.7
Rincheval, V.8
-
6
-
-
0033028516
-
Mitochondrial involvement in Alzheimer's disease
-
Bonilla E, Tanji K, Hirano M, Vu TH, DiMauro S, Schon EA (1999) Mitochondrial involvement in Alzheimer's disease. Biochim. Biophys. Acta 1410, 171–182.
-
(1999)
Biochim. Biophys. Acta
, vol.1410
, pp. 171-182
-
-
Bonilla, E.1
Tanji, K.2
Hirano, M.3
Vu, T.H.4
DiMauro, S.5
Schon, E.A.6
-
7
-
-
84867426439
-
Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress
-
Brandl A, Wagner T, Uhlig KM, Knauer SK, Stauber RH, Melchior F, Schneider G, Heinzel T, Kramer OH (2012) Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J. Mol. Cell Biol. 4, 284–293.
-
(2012)
J. Mol. Cell Biol.
, vol.4
, pp. 284-293
-
-
Brandl, A.1
Wagner, T.2
Uhlig, K.M.3
Knauer, S.K.4
Stauber, R.H.5
Melchior, F.6
Schneider, G.7
Heinzel, T.8
Kramer, O.H.9
-
8
-
-
33746329868
-
Energy converting NADH:quinone oxidoreductase (complex I)
-
Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75, 69–92.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 69-92
-
-
Brandt, U.1
-
9
-
-
85014802744
-
The road to restoring neural circuits for the treatment of Alzheimer's disease
-
Canter RG, Penney J, Tsai LH (2016) The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 539, 187–196.
-
(2016)
Nature
, vol.539
, pp. 187-196
-
-
Canter, R.G.1
Penney, J.2
Tsai, L.H.3
-
10
-
-
0030296713
-
Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer's disease
-
Chandrasekaran K, Hatanpaa K, Brady DR, Rapoport SI (1996) Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer's disease. Exp. Neurol. 142, 80–88.
-
(1996)
Exp. Neurol.
, vol.142
, pp. 80-88
-
-
Chandrasekaran, K.1
Hatanpaa, K.2
Brady, D.R.3
Rapoport, S.I.4
-
11
-
-
0020686674
-
Alzheimer's disease: a disorder of cortical cholinergic innervation
-
Coyle JT, Price DL, DeLong MR (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 21, 1184–1190.
-
(1983)
Science
, vol.21
, pp. 1184-1190
-
-
Coyle, J.T.1
Price, D.L.2
DeLong, M.R.3
-
12
-
-
17144428550
-
Stress-induced p53 runs a direct mitochondrial death program: its role in physiologic and pathophysiologic stress responses in vivo
-
Erster S, Moll UM (2004) Stress-induced p53 runs a direct mitochondrial death program: its role in physiologic and pathophysiologic stress responses in vivo. Cell Cycle 3, 1492–1495.
-
(2004)
Cell Cycle
, vol.3
, pp. 1492-1495
-
-
Erster, S.1
Moll, U.M.2
-
13
-
-
77952093744
-
Flow-cytometric analyses of viability biomarkers in pesticide-exposed sperm of three aquatic invertebrates
-
Favret KP, Lynn JW (2010) Flow-cytometric analyses of viability biomarkers in pesticide-exposed sperm of three aquatic invertebrates. Arch. Environ. Contam. Toxicol. 58, 973–984.
-
(2010)
Arch. Environ. Contam. Toxicol.
, vol.58
, pp. 973-984
-
-
Favret, K.P.1
Lynn, J.W.2
-
14
-
-
84870267018
-
Lack of p53 affects the expression of several brain mitochondrial proteins: insights from proteomics into important pathways regulated by p53
-
Fiorini A, Sultana R, Barone E, Cenini G, Perluigi M, Mancuso C, Cai J, Klein JB, St Clair D, Butterfield DA (2012) Lack of p53 affects the expression of several brain mitochondrial proteins: insights from proteomics into important pathways regulated by p53. PLoS ONE 7, e49846.
-
(2012)
PLoS ONE
, vol.7
-
-
Fiorini, A.1
Sultana, R.2
Barone, E.3
Cenini, G.4
Perluigi, M.5
Mancuso, C.6
Cai, J.7
Klein, J.B.8
St Clair, D.9
Butterfield, D.A.10
-
15
-
-
84902009201
-
The DNA-binding domain mediates both nuclear and cytosolic functions of p53
-
Follis AV, Llambi F, Ou L, Baran K, Green DR, Kriwacki RW (2014) The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat. Struct. Mol. Biol. 21, 535–543.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 535-543
-
-
Follis, A.V.1
Llambi, F.2
Ou, L.3
Baran, K.4
Green, D.R.5
Kriwacki, R.W.6
-
16
-
-
0029939002
-
Gene expression of ND4, a subunit of complex I of oxidative phosphorylation in mitochondria, is decreased in temporal cortex of brains of Alzheimer's disease patients
-
Fukuyama R, Hatanpaa K, Rapoport SI, Chandrasekaran K (1996) Gene expression of ND4, a subunit of complex I of oxidative phosphorylation in mitochondria, is decreased in temporal cortex of brains of Alzheimer's disease patients. Brain Res. 713, 290–293.
-
(1996)
Brain Res.
, vol.713
, pp. 290-293
-
-
Fukuyama, R.1
Hatanpaa, K.2
Rapoport, S.I.3
Chandrasekaran, K.4
-
17
-
-
0028791345
-
Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3
-
Hagen G, Dennig J, Preiss A, Beato M, Suske G (1995) Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3. J. Biol. Chem. 270, 24989–24994.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 24989-24994
-
-
Hagen, G.1
Dennig, J.2
Preiss, A.3
Beato, M.4
Suske, G.5
-
19
-
-
9644277218
-
Identification of a putative p53 binding sequence within the human mitochondrial genome
-
Heyne K, Mannebach S, Wuertz E, Knaup KX, Mahyar-Roemer M, Roemer K (2004) Identification of a putative p53 binding sequence within the human mitochondrial genome. FEBS Lett. 578, 198–202.
-
(2004)
FEBS Lett.
, vol.578
, pp. 198-202
-
-
Heyne, K.1
Mannebach, S.2
Wuertz, E.3
Knaup, K.X.4
Mahyar-Roemer, M.5
Roemer, K.6
-
20
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kahn CR, Verdin E (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
Lombard, D.B.6
Grueter, C.A.7
Harris, C.8
Biddinger, S.9
Ilkayeva, O.R.10
Stevens, R.D.11
Li, Y.12
Saha, A.K.13
Ruderman, N.B.14
Bain, J.R.15
Newgard, C.B.16
Farese, R.V.17
Alt, F.W.18
Kahn, C.R.19
Verdin, E.20
more..
-
21
-
-
34247338555
-
p53 is upregulated in Alzheimer's disease and induces tau phosphorylation in HEK293a cells
-
Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R (2007) p53 is upregulated in Alzheimer's disease and induces tau phosphorylation in HEK293a cells. Neurosci. Lett. 418, 34–37.
-
(2007)
Neurosci. Lett.
, vol.418
, pp. 34-37
-
-
Hooper, C.1
Meimaridou, E.2
Tavassoli, M.3
Melino, G.4
Lovestone, S.5
Killick, R.6
-
22
-
-
84882425828
-
Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
-
Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T, Matoba S (2013) Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2308
-
-
Hoshino, A.1
Mita, Y.2
Okawa, Y.3
Ariyoshi, M.4
Iwai-Kanai, E.5
Ueyama, T.6
Ikeda, K.7
Ogata, T.8
Matoba, S.9
-
23
-
-
0035868964
-
p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2
-
Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E, Yao TP (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340.
-
(2001)
EMBO J.
, vol.20
, pp. 1331-1340
-
-
Ito, A.1
Lai, C.H.2
Zhao, X.3
Saito, S.4
Hamilton, M.H.5
Appella, E.6
Yao, T.P.7
-
24
-
-
34447308268
-
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
-
Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169–3179.
-
(2007)
EMBO J.
, vol.26
, pp. 3169-3179
-
-
Kim, D.1
Nguyen, M.D.2
Dobbin, M.M.3
Fischer, A.4
Sananbenesi, F.5
Rodgers, J.T.6
Delalle, I.7
Baur, J.A.8
Sui, G.9
Armour, S.M.10
Puigserver, P.11
Sinclair, D.A.12
Tsai, L.H.13
-
25
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
Patel, K.2
Muldoon-Jacobs, K.3
Bisht, K.S.4
Aykin-Burns, N.5
Pennington, J.D.6
van der Meer, R.7
Nguyen, P.8
Savage, J.9
Owens, K.M.10
Vassilopoulos, A.11
Ozden, O.12
Park, S.H.13
Singh, K.K.14
Abdulkadir, S.A.15
Spitz, D.R.16
Deng, C.X.17
Gius, D.18
-
26
-
-
79952353862
-
Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture
-
Kim SH, Lu HF, Alano CC (2011) Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS ONE 6, e14731.
-
(2011)
PLoS ONE
, vol.6
-
-
Kim, S.H.1
Lu, H.F.2
Alano, C.C.3
-
27
-
-
84908079433
-
KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes
-
Koh DI, Han D, Ryu H, Choi WI, Jeon BN, Kim MK, Kim Y, Kim JY, Parry L, Clarke AR, Reynolds AB, Hur MW (2014) KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes. Proc. Natl Acad. Sci. USA 111, 15078–15083.
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 15078-15083
-
-
Koh, D.I.1
Han, D.2
Ryu, H.3
Choi, W.I.4
Jeon, B.N.5
Kim, M.K.6
Kim, Y.7
Kim, J.Y.8
Parry, L.9
Clarke, A.R.10
Reynolds, A.B.11
Hur, M.W.12
-
28
-
-
0036903625
-
Complex I mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) oxidation-reduction state
-
Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) oxidation-reduction state. Biochem J. 368, 545–553.
-
(2002)
Biochem J.
, vol.368
, pp. 545-553
-
-
Kushnareva, Y.1
Murphy, A.N.2
Andreyev, A.3
-
29
-
-
78649453960
-
Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?
-
Lee J, Ryu H (2010) Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker? BMB Rep. 43, 649–655.
-
(2010)
BMB Rep.
, vol.43
, pp. 649-655
-
-
Lee, J.1
Ryu, H.2
-
30
-
-
28844499005
-
Mitochondrial CREB regulates mitochondrial gene expression and neuronal survival
-
Lee J, Kim CH, Simon D, Aminova L, Andreyev A, Kushnareva Y, Murphy A, Lonze BE, Kim KS, Ginty DD, Ferrante RJ, Ryu H, Ratan RR (2005) Mitochondrial CREB regulates mitochondrial gene expression and neuronal survival. J. Biol. Chem. 280, 40398–40401.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40398-40401
-
-
Lee, J.1
Kim, C.H.2
Simon, D.3
Aminova, L.4
Andreyev, A.5
Kushnareva, Y.6
Murphy, A.7
Lonze, B.E.8
Kim, K.S.9
Ginty, D.D.10
Ferrante, R.J.11
Ryu, H.12
Ratan, R.R.13
-
31
-
-
77956295588
-
p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase
-
Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ (2010) p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS ONE 5, e10486.
-
(2010)
PLoS ONE
, vol.5
-
-
Li, S.1
Banck, M.2
Mujtaba, S.3
Zhou, M.M.4
Sugrue, M.M.5
Walsh, M.J.6
-
32
-
-
4344566202
-
Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells
-
Mahyar-Roemer M, Fritzsche C, Wagner S, Laue M, Roemer K (2004) Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells. Oncogene 23, 6226–6236.
-
(2004)
Oncogene
, vol.23
, pp. 6226-6236
-
-
Mahyar-Roemer, M.1
Fritzsche, C.2
Wagner, S.3
Laue, M.4
Roemer, K.5
-
33
-
-
0034717014
-
Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling
-
Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 16202-16212
-
-
Marchenko, N.D.1
Zaika, A.2
Moll, U.M.3
-
34
-
-
0037010862
-
Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters
-
Mathiesen C, Hagerhall C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim. Biophys. Acta 1556, 121–132.
-
(2002)
Biochim. Biophys. Acta
, vol.1556
, pp. 121-132
-
-
Mathiesen, C.1
Hagerhall, C.2
-
35
-
-
0037349289
-
p53 has a direct apoptogenic role at the mitochondria
-
Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590.
-
(2003)
Mol. Cell
, vol.11
, pp. 577-590
-
-
Mihara, M.1
Erster, S.2
Zaika, A.3
Petrenko, O.4
Chittenden, T.5
Pancoska, P.6
Moll, U.M.7
-
36
-
-
27544486327
-
Transcription-independent pro-apoptotic functions of p53
-
Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631–636.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 631-636
-
-
Moll, U.M.1
Wolff, S.2
Speidel, D.3
Deppert, W.4
-
37
-
-
19944434132
-
Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease
-
Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2005) Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease. FASEB J. 19, 255–257.
-
(2005)
FASEB J.
, vol.19
, pp. 255-257
-
-
Ohyagi, Y.1
Asahara, H.2
Chui, D.H.3
Tsuruta, Y.4
Sakae, N.5
Miyoshi, K.6
Yamada, T.7
Kikuchi, H.8
Taniwaki, T.9
Murai, H.10
Ikezoe, K.11
Furuya, H.12
Kawarabayashi, T.13
Shoji, M.14
Checler, F.15
Iwaki, T.16
Makifuchi, T.17
Takeda, K.18
Kira, J.19
Tabira, T.20
more..
-
38
-
-
0037108799
-
SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
-
Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl Acad. Sci. USA 99, 13653–13658.
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 13653-13658
-
-
Onyango, P.1
Celic, I.2
McCaffery, J.M.3
Boeke, J.D.4
Feinberg, A.P.5
-
39
-
-
46749115781
-
Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model
-
Palacios G, Crawford HC, Vaseva A, Moll UM (2008) Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model. Cell Cycle 7, 2584–2590.
-
(2008)
Cell Cycle
, vol.7
, pp. 2584-2590
-
-
Palacios, G.1
Crawford, H.C.2
Vaseva, A.3
Moll, U.M.4
-
40
-
-
84959170852
-
p53 as guardian of the mitochondrial genome
-
Park J-H, Li J, Hwang PM (2016) p53 as guardian of the mitochondrial genome. FEBS Lett. 590, 924–934.
-
(2016)
FEBS Lett.
, vol.590
, pp. 924-934
-
-
Park, J.-H.1
Li, J.2
Hwang, P.M.3
-
41
-
-
18644365597
-
Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells
-
Roy S, Packman K, Jeffrey R, Tenniswood M (2005) Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ. 12, 482–491.
-
(2005)
Cell Death Differ.
, vol.12
, pp. 482-491
-
-
Roy, S.1
Packman, K.2
Jeffrey, R.3
Tenniswood, M.4
-
42
-
-
25444515720
-
Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons
-
Ryu H, Lee J, Impey S, Ratan RR, Ferrante RJ (2005) Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc. Natl Acad. Sci. USA 102, 13915–13920.
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 13915-13920
-
-
Ryu, H.1
Lee, J.2
Impey, S.3
Ratan, R.R.4
Ferrante, R.J.5
-
43
-
-
0032530486
-
DNA damage activates p53 through a phosphorylation-acetylation cascade
-
Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841.
-
(1998)
Genes Dev.
, vol.12
, pp. 2831-2841
-
-
Sakaguchi, K.1
Herrera, J.E.2
Saito, S.3
Miki, T.4
Bustin, M.5
Vassilev, A.6
Anderson, C.W.7
Appella, E.8
-
44
-
-
0035910385
-
Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells
-
Sansome C, Zaika A, Marchenko ND, Moll UM (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 488, 110–115.
-
(2001)
FEBS Lett.
, vol.488
, pp. 110-115
-
-
Sansome, C.1
Zaika, A.2
Marchenko, N.D.3
Moll, U.M.4
-
45
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560–13567.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 13560-13567
-
-
Shi, T.1
Wang, F.2
Stieren, E.3
Tong, Q.4
-
46
-
-
44849107824
-
Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer's disease
-
Silva PN, Gigek CO, Leal MF, Bertolucci PH, de Labio RW, Payao SL, Smith Mde A (2008) Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer's disease. J. Alzheimers Dis. 13, 173–176.
-
(2008)
J. Alzheimers Dis.
, vol.13
, pp. 173-176
-
-
Silva, P.N.1
Gigek, C.O.2
Leal, M.F.3
Bertolucci, P.H.4
de Labio, R.W.5
Payao, S.L.6
Smith Mde, A.7
-
47
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802–812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
Yu, W.2
Hallows, W.C.3
Xu, J.4
Vann, J.M.5
Leeuwenburgh, C.6
Tanokura, M.7
Denu, J.M.8
Prolla, T.A.9
-
48
-
-
84860210262
-
Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer's disease
-
Swerdlow RH (2012) Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer's disease. Antioxid. Redox Signal. 16, 1434–1455.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 1434-1455
-
-
Swerdlow, R.H.1
-
49
-
-
12144290904
-
Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury
-
Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc. Natl Acad. Sci. USA 101, 3071–3076.
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 3071-3076
-
-
Teng, Y.D.1
Choi, H.2
Onario, R.C.3
Zhu, S.4
Desilets, F.C.5
Lan, S.6
Woodard, E.J.7
Snyder, E.Y.8
Eichler, M.E.9
Friedlander, R.M.10
-
50
-
-
9144266953
-
Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors
-
Terui T, Murakami K, Takimoto R, Takahashi M, Takada K, Murakami T, Minami S, Matsunaga T, Takayama T, Kato J, Niitsu Y (2003) Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res. 63, 8948–8954.
-
(2003)
Cancer Res.
, vol.63
, pp. 8948-8954
-
-
Terui, T.1
Murakami, K.2
Takimoto, R.3
Takahashi, M.4
Takada, K.5
Murakami, T.6
Minami, S.7
Matsunaga, T.8
Takayama, T.9
Kato, J.10
Niitsu, Y.11
-
51
-
-
33646826684
-
WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization
-
Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C, Pan H, Kessler H, Pancoska P, Moll UM (2006) WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J. Biol. Chem. 281, 8600–8606.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 8600-8606
-
-
Tomita, Y.1
Marchenko, N.2
Erster, S.3
Nemajerova, A.4
Dehner, A.5
Klein, C.6
Pan, H.7
Kessler, H.8
Pancoska, P.9
Moll, U.M.10
-
52
-
-
84862675016
-
p53 opens the mitochondrial permeability transition pore to trigger necrosis
-
Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548.
-
(2012)
Cell
, vol.149
, pp. 1536-1548
-
-
Vaseva, A.V.1
Marchenko, N.D.2
Ji, K.3
Tsirka, S.E.4
Holzmann, S.5
Moll, U.M.6
-
53
-
-
84876445381
-
CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease
-
Weir HJ, Murray TK, Kehoe PG, Love S, Verdin EM, O'Neill MJ, Lane JD, Balthasar N (2012) CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease. PLoS ONE 7, e48225.
-
(2012)
PLoS ONE
, vol.7
-
-
Weir, H.J.1
Murray, T.K.2
Kehoe, P.G.3
Love, S.4
Verdin, E.M.5
O'Neill, M.J.6
Lane, J.D.7
Balthasar, N.8
-
54
-
-
0036833437
-
Therapeutic strategies for Alzheimer's disease
-
Wolfe MS (2002) Therapeutic strategies for Alzheimer's disease. Nat. Rev Drug Discov. 1, 859–866.
-
(2002)
Nat. Rev Drug Discov.
, vol.1
, pp. 859-866
-
-
Wolfe, M.S.1
-
55
-
-
73349095758
-
Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53
-
Wong TS, Rajagopalan S, Freund SM, Rutherford TJ, Andreeva A, Townsley FM, Petrovich M, Fersht AR (2009) Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res. 37, 6765–6783.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 6765-6783
-
-
Wong, T.S.1
Rajagopalan, S.2
Freund, S.M.3
Rutherford, T.J.4
Andreeva, A.5
Townsley, F.M.6
Petrovich, M.7
Fersht, A.R.8
-
56
-
-
18144382261
-
p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase
-
Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK (2005) p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 65, 3745–3750.
-
(2005)
Cancer Res.
, vol.65
, pp. 3745-3750
-
-
Zhao, Y.1
Chaiswing, L.2
Velez, J.M.3
Batinic-Haberle, I.4
Colburn, N.H.5
Oberley, T.D.6
St Clair, D.K.7
-
57
-
-
84886414626
-
Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity
-
Zhuang J, Wang PY, Huang X, Chen X, Kang JG, Hwang PM (2013) Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc. Natl Acad. Sci. USA 110, 17356–17361.
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 17356-17361
-
-
Zhuang, J.1
Wang, P.Y.2
Huang, X.3
Chen, X.4
Kang, J.G.5
Hwang, P.M.6
|