메뉴 건너뛰기




Volumn 102, Issue 3, 2018, Pages 2099-2116

Machine Learning Based Big Data Processing Framework for Cancer Diagnosis Using Hidden Markov Model and GM Clustering

Author keywords

Bayesian hidden Markov model; Big Data; Comparative genomic hybridization; DNA copy number change; Gaussian mixture clustering; Machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER GENERATED HOLOGRAPHY; DATA HANDLING; DIAGNOSIS; DISEASES; DNA; GENES; HIDDEN MARKOV MODELS; LEARNING SYSTEMS; TRELLIS CODES;

EID: 85033575553     PISSN: 09296212     EISSN: 1572834X     Source Type: Journal    
DOI: 10.1007/s11277-017-5044-z     Document Type: Article
Times cited : (195)

References (69)
  • 1
    • 59949106015 scopus 로고    scopus 로고
    • Genomic copy number determination in cancer cells from single nucleotide polymorphism microarrays based on quantitative genotyping corrected for aneuploidy
    • Attiyeh, E. F., Diskin, S. J., Attiyeh, M. A., Mossé, Y. P., Hou, C., Jackson, E. M., et al. (2009). Genomic copy number determination in cancer cells from single nucleotide polymorphism microarrays based on quantitative genotyping corrected for aneuploidy. Genome Research, 19(2), 276–283
    • (2009) Genome Research , vol.19 , Issue.2 , pp. 276-283
    • Attiyeh, E.F.1    Diskin, S.J.2    Attiyeh, M.A.3    Mossé, Y.P.4    Hou, C.5    Jackson, E.M.6    Maris, J.M.7
  • 2
    • 2342453338 scopus 로고    scopus 로고
    • An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays
    • Zhao, X., Li, C., Paez, J. G., Chin, K., Jänne, P. A., Chen, T. H., et al. (2004). An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Research, 64(9), 3060–3071
    • (2004) Cancer Research , vol.64 , Issue.9 , pp. 3060-3071
    • Zhao, X.1    Li, C.2    Paez, J.G.3    Chin, K.4    Jänne, P.A.5    Chen, T.H.6    Gray, J.W.7
  • 4
    • 85070415742 scopus 로고    scopus 로고
    • Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm
    • Varatharajan, R., Manogaran, G., Priyan, M. K., & Sundarasekar, R. (2017). Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Computing, 1–10
    • (2017) Cluster Computing , pp. 1-10
    • Varatharajan, R.1    Manogaran, G.2    Priyan, M.K.3    Sundarasekar, R.4
  • 5
    • 85050484458 scopus 로고    scopus 로고
    • Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis
    • Varatharajan, R., Manogaran, G., Priyan, M. K., Balaş, V. E., & Barna, C. (2017). Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis. Multimedia Tools and Applications, 1–21
    • (2017) Multimedia Tools and Applications , pp. 1-21
    • Varatharajan, R.1    Manogaran, G.2    Priyan, M.K.3    Balaş, V.E.4    Barna, C.5
  • 7
    • 85028654899 scopus 로고    scopus 로고
    • An adaptive decision based kriging interpolation algorithm for the removal of high density salt and pepper noise in images
    • Varatharajan, R., Vasanth, K., Gunasekaran, M., Priyan, M., & Gao, X. Z. (2017). An adaptive decision based kriging interpolation algorithm for the removal of high density salt and pepper noise in images. Computers & Electrical Engineering
    • (2017) Computers & Electrical Engineering
    • Varatharajan, R.1    Vasanth, K.2    Gunasekaran, M.3    Priyan, M.4    Gao, X.Z.5
  • 9
    • 85041173641 scopus 로고    scopus 로고
    • Spatial cumulative sum algorithm with big data analytics for climate change detection
    • Manogaran, G., & Lopez, D. (2017). Spatial cumulative sum algorithm with big data analytics for climate change detection. Computers & Electrical Engineering
    • (2017) Computers & Electrical Engineering.
    • Manogaran, G.1    Lopez, D.2
  • 10
    • 85080152487 scopus 로고    scopus 로고
    • A Gaussian process based big data processing framework in cluster computing environment
    • Manogaran, G., & Lopez, D. (2017). A Gaussian process based big data processing framework in cluster computing environment. Cluster Computing, 1–16
    • (2017) Cluster Computing , pp. 1-16
    • Manogaran, G.1    Lopez, D.2
  • 15
    • 85045732672 scopus 로고    scopus 로고
    • Big data architecture for climate change and disease dynamics
    • Tomar GS, (ed), CRC Press, Boca Raton
    • Lopez, D., & Manogaran, G. (2016). Big data architecture for climate change and disease dynamics. In G. S. Tomar et al. (Eds.) The human element of big data: issues, analytics, and performance (pp. 301–331). Boca Raton: CRC Press
    • (2016) The human element of big data: issues, analytics, and performance , pp. 301-331
    • Lopez, D.1    Manogaran, G.2
  • 16
    • 84975503360 scopus 로고    scopus 로고
    • MetaCloud data storage architecture for big data security in cloud computing
    • Manogaran, G., Thota, C., & Kumar, M. V. (2016). MetaCloud data storage architecture for big data security in cloud computing. Procedia Computer Science, 87, 128–133
    • (2016) Procedia Computer Science , vol.87 , pp. 128-133
    • Manogaran, G.1    Thota, C.2    Kumar, M.V.3
  • 17
    • 85032984640 scopus 로고    scopus 로고
    • Health data analytics using scalable logistic regression with stochastic gradient descent
    • Manogaran, G., & Lopez, D. (2016). Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms, 9, 1–15
    • (2016) International Journal of Advanced Intelligence Paradigms , vol.9 , pp. 1-15
    • Manogaran, G.1    Lopez, D.2
  • 18
    • 85016011350 scopus 로고    scopus 로고
    • Disease surveillance system for big climate data processing and dengue transmission
    • Manogaran, G., & Lopez, D. (2017). Disease surveillance system for big climate data processing and dengue transmission. International Journal of Ambient Computing and Intelligence, 8(2), 88–105
    • (2017) International Journal of Ambient Computing and Intelligence , vol.8 , Issue.2 , pp. 88-105
    • Manogaran, G.1    Lopez, D.2
  • 21
    • 84885621522 scopus 로고    scopus 로고
    • Development: big data for a sustainable future
    • Gijzen, H. (2013). Development: big data for a sustainable future. Nature, 502(7469), 38
    • (2013) Nature , vol.502 , Issue.7469 , pp. 38
    • Gijzen, H.1
  • 22
    • 84901752298 scopus 로고    scopus 로고
    • The design of water resources and hydropower cloud GIS platform based on big data
    • Xie Y, Cui X, Bian F, (eds), Springer, Berlin
    • Wang, X., & Sun, Z. (2013). The design of water resources and hydropower cloud GIS platform based on big data. In Y. Xie, X. Cui & F. Bian (Eds.), Geo-informatics in resource management and sustainable ecosystem (pp. 313–322). Berlin: Springer
    • (2013) Geo-informatics in resource management and sustainable ecosystem , pp. 313-322
    • Wang, X.1    Sun, Z.2
  • 25
    • 84929146921 scopus 로고    scopus 로고
    • Polarized frames on—climate change‖ and—global warming‖ across countries and states: evidence from twitter big data
    • Jang, S. M., & Hart, P. S. (2015). Polarized frames on—climate change‖ and—global warming‖ across countries and states: evidence from twitter big data. Global Environmental Change, 32, 11–17
    • (2015) Global Environmental Change , vol.32 , pp. 11-17
    • Jang, S.M.1    Hart, P.S.2
  • 26
    • 71749094178 scopus 로고    scopus 로고
    • Parallel k-means clustering based on mapreduce
    • Jaatun MG, Zhao G, Rong C, (eds), Springer, Berlin
    • Zhao, W., Ma, H., & He, Q. (2009). Parallel k-means clustering based on mapreduce. In M. G. Jaatun, G. Zhao & C. Rong (Eds.), Cloud computing (pp. 674–679). Berlin: Springer
    • (2009) Cloud computing , pp. 674-679
    • Zhao, W.1    Ma, H.2    He, Q.3
  • 29
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, No. (34), pp. 226–231)
    • (1996) Kdd , vol.96 , Issue.34 , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 32
    • 85014420986 scopus 로고    scopus 로고
    • Projected clustering for huge data sets in MapReduce
    • Fries, S., Wels, S., & Seidl, T. (2014).Projected clustering for huge data sets in MapReduce. In EDBT (pp. 49–60)
    • (2014) EDBT , pp. 49-60
    • Fries, S.1    Wels, S.2    Seidl, T.3
  • 34
    • 84995579285 scopus 로고    scopus 로고
    • Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach
    • Gao, Z., Bu, W., Zheng, Y., & Wu, X. (2017). Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach. Computerized Medical Imaging and Graphics, 55, 42–53
    • (2017) Computerized Medical Imaging and Graphics , vol.55 , pp. 42-53
    • Gao, Z.1    Bu, W.2    Zheng, Y.3    Wu, X.4
  • 35
  • 37
    • 62349115731 scopus 로고    scopus 로고
    • A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms
    • Tang, J., Liu, X., & Sun, Q. (2009). A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. IEEE Journal of Selected Topics in Signal Processing, 3(1), 74–80
    • (2009) IEEE Journal of Selected Topics in Signal Processing , vol.3 , Issue.1 , pp. 74-80
    • Tang, J.1    Liu, X.2    Sun, Q.3
  • 38
    • 84883342463 scopus 로고    scopus 로고
    • A new energy framework with distribution descriptors for image segmentation
    • Li, C., Wang, X., Eberl, S., Fulham, M., & Feng, D. (2013). A new energy framework with distribution descriptors for image segmentation. IEEE Transactions on Image Processing, 22(9), 3578–3590
    • (2013) IEEE Transactions on Image Processing , vol.22 , Issue.9 , pp. 3578-3590
    • Li, C.1    Wang, X.2    Eberl, S.3    Fulham, M.4    Feng, D.5
  • 39
    • 84868642587 scopus 로고    scopus 로고
    • RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment RNFL attenuation coefficient maps for Glaucoma
    • Vermeer, K. A., van der Schoot, J., Lemij, H. G., & de Boer, J. F. (2012). RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment RNFL attenuation coefficient maps for Glaucoma. Investigative Ophthalmology & Visual Science, 53(10), 6102–6108
    • (2012) Investigative Ophthalmology & Visual Science , vol.53 , Issue.10 , pp. 6102-6108
    • Vermeer, K.A.1    van der Schoot, J.2    Lemij, H.G.3    de Boer, J.F.4
  • 43
    • 84900821630 scopus 로고    scopus 로고
    • Bayesian estimation of Dirichlet mixture model with variational inference
    • Ma, Z., Rana, P. K., Taghia, J., Flierl, M., & Leijon, A. (2014). Bayesian estimation of Dirichlet mixture model with variational inference. Pattern Recognition, 47(9), 3143–3157
    • (2014) Pattern Recognition , vol.47 , Issue.9 , pp. 3143-3157
    • Ma, Z.1    Rana, P.K.2    Taghia, J.3    Flierl, M.4    Leijon, A.5
  • 46
    • 2942527473 scopus 로고    scopus 로고
    • Gene prediction with a hidden Markov model and a new intron submodel
    • Stanke, M., & Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics, 19(suppl 2), ii215–ii225
    • (2003) Bioinformatics , vol.19 , pp. ii215-ii225
    • Stanke, M.1    Waack, S.2
  • 48
    • 35948984173 scopus 로고    scopus 로고
    • PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data
    • Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F., et al. (2007). PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research, 17(11), 1665–1674
    • (2007) Genome Research , vol.17 , Issue.11 , pp. 1665-1674
    • Wang, K.1    Li, M.2    Hadley, D.3    Liu, R.4    Glessner, J.5    Grant, S.F.6    Bucan, M.7
  • 49
    • 0034360451 scopus 로고    scopus 로고
    • Detecting homogeneous segments in DNA sequences by using hidden Markov models
    • Boys, R. J., Henderson, D. A., & Wilkinson, D. J. (2000). Detecting homogeneous segments in DNA sequences by using hidden Markov models. Applied Statistics, 49, 269–285
    • (2000) Applied Statistics , vol.49 , pp. 269-285
    • Boys, R.J.1    Henderson, D.A.2    Wilkinson, D.J.3
  • 50
    • 0001572082 scopus 로고
    • Maximum-likelihood estimation for hidden Markov models
    • Leroux, B. G. (1992). Maximum-likelihood estimation for hidden Markov models. Stochastic processes and their applications, 40(1), 127–143
    • (1992) Stochastic processes and their applications , vol.40 , Issue.1 , pp. 127-143
    • Leroux, B.G.1
  • 51
    • 85048471850 scopus 로고    scopus 로고
    • Retrieved October 9, 2017, from
    • Hidden Markov model. (2017). En.wikipedia.org. Retrieved October 9, 2017, from http://en.wikipedia.org/wiki/Hidden_Markov_model#/media/File:HiddenMarkovModel.svg
    • (2017) En.Wikipedia.Org
  • 52
    • 1542537849 scopus 로고    scopus 로고
    • Combining phylogenetic and hidden Markov models in biosequence analysis
    • Siepel, A., & Haussler, D. (2004). Combining phylogenetic and hidden Markov models in biosequence analysis. Journal of Computational Biology, 11(2–3), 413–428
    • (2004) Journal of Computational Biology , vol.11 , Issue.2-3 , pp. 413-428
    • Siepel, A.1    Haussler, D.2
  • 53
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology: Applications to protein modeling
    • Krogh, A., Brown, M., Mian, I. S., Sjölander, K., & Haussler, D. (1994). Hidden Markov models in computational biology: Applications to protein modeling. Journal of Molecular Biology, 235(5), 1501–1531
    • (1994) Journal of Molecular Biology , vol.235 , Issue.5 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.S.3    Sjölander, K.4    Haussler, D.5
  • 54
    • 0024557590 scopus 로고
    • Stochastic models for heterogeneous DNA sequences
    • Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences. Bulletin of Mathematical Biology, 51(1), 79–94
    • (1989) Bulletin of Mathematical Biology , vol.51 , Issue.1 , pp. 79-94
    • Churchill, G.A.1
  • 55
    • 33645161645 scopus 로고    scopus 로고
    • Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources
    • Stanke, M., Schöffmann, O., Morgenstern, B., & Waack, S. (2006). Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics, 7(1), 62
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 62
    • Stanke, M.1    Schöffmann, O.2    Morgenstern, B.3    Waack, S.4
  • 56
    • 0031855197 scopus 로고    scopus 로고
    • Automatic extraction of motifs represented in the hidden Markov model from a number of DNA sequences
    • Yada, T., Totoki, Y., Ishikawa, M., Asai, K., & Nakai, K. (1998). Automatic extraction of motifs represented in the hidden Markov model from a number of DNA sequences. Bioinformatics, 14(4), 317–325
    • (1998) Bioinformatics , vol.14 , Issue.4 , pp. 317-325
    • Yada, T.1    Totoki, Y.2    Ishikawa, M.3    Asai, K.4    Nakai, K.5
  • 57
    • 85010014371 scopus 로고    scopus 로고
    • Hidden Markov models for protein domain homology identification and analysis
    • Jablonowski, K. (2017). Hidden Markov models for protein domain homology identification and analysis. SH2 Domains: Methods and Protocols, 1555, 47–58
    • (2017) SH2 Domains: Methods and Protocols , vol.1555 , pp. 47-58
    • Jablonowski, K.1
  • 58
    • 84996992962 scopus 로고    scopus 로고
    • Treatment of nonignorable missing data when modeling unobserved heterogeneity with finite mixture models
    • Lehmann, T., & Schlattmann, P. (2017). Treatment of nonignorable missing data when modeling unobserved heterogeneity with finite mixture models. Biometrical Journal, 59(1), 159–171
    • (2017) Biometrical Journal , vol.59 , Issue.1 , pp. 159-171
    • Lehmann, T.1    Schlattmann, P.2
  • 59
    • 85003794062 scopus 로고    scopus 로고
    • Spatial fuzzy C means and expectation maximization algorithms with bias correction for segmentation of MR brain images
    • Prakash, R. M., & Kumari, R. S. S. (2017). Spatial fuzzy C means and expectation maximization algorithms with bias correction for segmentation of MR brain images. Journal of Medical Systems, 41(1), 15
    • (2017) Journal of Medical Systems , vol.41 , Issue.1 , pp. 15
    • Prakash, R.M.1    Kumari, R.S.S.2
  • 60
    • 85013194774 scopus 로고    scopus 로고
    • An expectation maximization method for joint estimation of emission activity distribution and photon attenuation map in PET
    • Mihlin, A., & Levin, C. S. (2017). An expectation maximization method for joint estimation of emission activity distribution and photon attenuation map in PET. IEEE Transactions on Medical Imaging, 36(1), 214–224
    • (2017) IEEE Transactions on Medical Imaging , vol.36 , Issue.1 , pp. 214-224
    • Mihlin, A.1    Levin, C.S.2
  • 61
    • 84991660186 scopus 로고    scopus 로고
    • An expectation–maximization scheme for measurement error models
    • Bhadra, A. (2017). An expectation–maximization scheme for measurement error models. Statistics & Probability Letters, 120, 61–68
    • (2017) Statistics & Probability Letters , vol.120 , pp. 61-68
    • Bhadra, A.1
  • 63
    • 85011317340 scopus 로고    scopus 로고
    • EM algorithm-based likelihood estimation for a generalized Gompertz regression model in presence of survival data with long-term survivors: an application to uterine cervical cancer data
    • Borges, P. (2017). EM algorithm-based likelihood estimation for a generalized Gompertz regression model in presence of survival data with long-term survivors: an application to uterine cervical cancer data. Journal of Statistical Computation and Simulation, 87, 1–11
    • (2017) Journal of Statistical Computation and Simulation , vol.87 , pp. 1-11
    • Borges, P.1
  • 64
    • 85009284714 scopus 로고    scopus 로고
    • EM-based identification of continuous-time ARMA Models from irregularly sampled data
    • Chen, F., Agüero, J. C., Gilson, M., Garnier, H., & Liu, T. (2017). EM-based identification of continuous-time ARMA Models from irregularly sampled data. Automatica, 77, 293–301
    • (2017) Automatica , vol.77 , pp. 293-301
    • Chen, F.1    Agüero, J.C.2    Gilson, M.3    Garnier, H.4    Liu, T.5
  • 65
    • 84977517334 scopus 로고    scopus 로고
    • Reduced expression of the DNA glycosylase gene MUTYH is associated with an increased number of somatic mutations via a reduction in the DNA repair capacity in prostate adenocarcinoma
    • Shinmura, K., Kato, H., Kawanishi, Y., Yoshimura, K., Igarashi, H., Goto, M., et al. (2017). Reduced expression of the DNA glycosylase gene MUTYH is associated with an increased number of somatic mutations via a reduction in the DNA repair capacity in prostate adenocarcinoma. Molecular Carcinogenesis, 56(2), 781–788
    • (2017) Molecular Carcinogenesis , vol.56 , Issue.2 , pp. 781-788
    • Shinmura, K.1    Kato, H.2    Kawanishi, Y.3    Yoshimura, K.4    Igarashi, H.5    Goto, M.6    Ozono, S.7
  • 68
    • 0016209922 scopus 로고
    • A cluster analysis method for grouping means in the analysis of variance
    • Scott, A. J., & Knott, M. (1974). A cluster analysis method for grouping means in the analysis of variance. Biometrics, 30, 507–512
    • (1974) Biometrics , vol.30 , pp. 507-512
    • Scott, A.J.1    Knott, M.2
  • 69
    • 0024541195 scopus 로고
    • Algorithms for the optimal identification of segment neighborhoods
    • Auger, I. E., & Lawrence, C. E. (1989). Algorithms for the optimal identification of segment neighborhoods. Bulletin of Mathematical Biology, 51(1), 39–54
    • (1989) Bulletin of Mathematical Biology , vol.51 , Issue.1 , pp. 39-54
    • Auger, I.E.1    Lawrence, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.