메뉴 건너뛰기




Volumn 59, Issue 1, 2017, Pages 159-171

Treatment of nonignorable missing data when modeling unobserved heterogeneity with finite mixture models

Author keywords

Mixture model; MNAR; Nonignorable missing data

Indexed keywords

ITERATIVE METHODS;

EID: 84996992962     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201500037     Document Type: Article
Times cited : (1)

References (22)
  • 1
    • 0141767039 scopus 로고    scopus 로고
    • A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey
    • Baker, S. G., Ko, C.-W. and Graubard, B. I. (2003). A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey. Biostatistics 4, 41–56.
    • (2003) Biostatistics , vol.4 , pp. 41-56
    • Baker, S.G.1    Ko, C.-W.2    Graubard, B.I.3
  • 2
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • Beunckens, C., Molenberghs, G., Verbeke, G. and Mallinckrodt, C. (2008). A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 64, 96–105.
    • (2008) Biometrics , vol.64 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 4
    • 34347398256 scopus 로고    scopus 로고
    • Sensitivity analysis after multiple imputation under missing at random: a weighting approach
    • Carpenter, J. R., Kenward, M. G. and White, I. R. (2007). Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Statistical Methods in Medical Research 16, 259–275.
    • (2007) Statistical Methods in Medical Research , vol.16 , pp. 259-275
    • Carpenter, J.R.1    Kenward, M.G.2    White, I.R.3
  • 13
    • 0037469119 scopus 로고    scopus 로고
    • Asymptotic properties of the em algorithm estimate for normal mixture models with component specific variances
    • Nityasuddhi, D. and Böhning, D. (2003). Asymptotic properties of the em algorithm estimate for normal mixture models with component specific variances. Computational Statistics & Data Analysis 41, 591–601.
    • (2003) Computational Statistics & Data Analysis , vol.41 , pp. 591-601
    • Nityasuddhi, D.1    Böhning, D.2
  • 16
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 19
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods 7, 147.
    • (2002) Psychological Methods , vol.7 , pp. 147
    • Schafer, J.L.1    Graham, J.W.2
  • 22
    • 0344718782 scopus 로고    scopus 로고
    • 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension
    • WHO (2003). 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. Journal of Hypertension 21, 1983–1992.
    • (2003) Journal of Hypertension , vol.21 , pp. 1983-1992


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.