메뉴 건너뛰기




Volumn , Issue , 2016, Pages 303-333

Big data architecture for climate change and disease dynamics

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA; COMPUTER SOFTWARE; CORRELATION METHODS; FORECASTING; NETWORK ARCHITECTURE;

EID: 85045732672     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781315368061     Document Type: Chapter
Times cited : (33)

References (59)
  • 2
    • 84905990877 scopus 로고    scopus 로고
    • Big Data in health care: Using analytics to identify and manage high-risk and high-cost patients
    • Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., and Escobar, G. (2014). Big Data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 1123-1131.
    • (2014) Health Affairs , vol.33 , Issue.7 , pp. 1123-1131
    • Bates, D.W.1    Saria, S.2    Ohno-Machado, L.3    Shah, A.4    Escobar, G.5
  • 3
    • 84928486622 scopus 로고    scopus 로고
    • Distributed parallel architecture for Big Data
    • Boja, C., Pocovnicu, A., and Batagan, L. (2012). Distributed parallel architecture for Big Data. Informatica Economica, 16(2), 116-127.
    • (2012) Informatica Economica , vol.16 , Issue.2 , pp. 116-127
    • Boja, C.1    Pocovnicu, A.2    Batagan, L.3
  • 7
    • 84892160333 scopus 로고    scopus 로고
    • Bringing Big Data to personalized healthcare: A patient-centered framework
    • Chawla, N. V. and Davis, D. A. (2013). Bringing Big Data to personalized healthcare: A patient-centered framework. Journal of General Internal Medicine, 28(3), 660-665.
    • (2013) Journal of General Internal Medicine , vol.28 , Issue.3 , pp. 660-665
    • Chawla, N.V.1    Davis, D.A.2
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107-113.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 84991818059 scopus 로고    scopus 로고
    • A Big Data guide to understanding climate change: The case for theory-guided data science
    • Faghmous, J. H. and Kumar, V. (2014). A Big Data guide to understanding climate change: The case for theory-guided data science. Big Data, 2(3), 155-163.
    • (2014) Big Data , vol.2 , Issue.3 , pp. 155-163
    • Faghmous, J.H.1    Kumar, V.2
  • 11
    • 84900644792 scopus 로고    scopus 로고
    • Mining Big Data: Current status, and forecast to the future
    • Fan, W. and Bifet, A. (2013). Mining Big Data: Current status, and forecast to the future. ACM SIGKDD Explorations Newsletter, 14(2), 1-5.
    • (2013) ACM SIGKDD Explorations Newsletter , vol.14 , Issue.2 , pp. 1-5
    • Fan, W.1    Bifet, A.2
  • 13
    • 84885621522 scopus 로고    scopus 로고
    • Development: Big Data for a sustainable future
    • Gijzen, H. (2013). Development: Big Data for a sustainable future. Nature, 502(7469), 38.
    • (2013) Nature , vol.502 , Issue.7469 , pp. 38
    • Gijzen, H.1
  • 14
    • 85027349207 scopus 로고    scopus 로고
    • Retrieved January 8, 2016
    • GitHub. (2016). Esri/geoprocessing-tools-for-hadoop. Retrieved January 8, 2016. https://github .com/Esri/geoprocessing-tools-for-hadoop.
    • (2016) Esri/geoprocessing-tools-for-hadoop
  • 18
    • 85052945860 scopus 로고    scopus 로고
    • λ lambda-architecture.net. Retrieved January 8, 2016
    • Hausenblas, M. and Bijnens, N. (2016). Components. λ lambda-architecture.net. Retrieved January 8, 2016. http://lambda-architecture.net/components.
    • (2016) Components
    • Hausenblas, M.1    Bijnens, N.2
  • 22
    • 84929146921 scopus 로고    scopus 로고
    • Polarized frames on "climate change" and "global warming" across countries and states: Evidence from Twitter big data
    • Jang, S. M. and Hart, P. S. (2015). Polarized frames on "climate change" and "global warming" across countries and states: Evidence from Twitter big data. Global Environmental Change, 32, 11-17.
    • (2015) Global Environmental Change , vol.32 , pp. 11-17
    • Jang, S.M.1    Hart, P.S.2
  • 23
    • 84880079763 scopus 로고    scopus 로고
    • Potentiality of Big Data in the medical sector: Focus on how to reshape the healthcare system
    • Jee, K. and Kim, G. H. (2013). Potentiality of Big Data in the medical sector: Focus on how to reshape the healthcare system. Healthcare Informatics Research, 19(2), 79-85.
    • (2013) Healthcare Informatics Research , vol.19 , Issue.2 , pp. 79-85
    • Jee, K.1    Kim, G.H.2
  • 26
    • 85046460511 scopus 로고    scopus 로고
    • Global social media users pass 2 billion
    • Retrieved January 8
    • Kemp, S. (2014). Global social media users pass 2 billion. We Are Social UK. Retrieved January 8, 2016. http://wearesocial.net/blog/2014/08/global-social-media-users-pass-2-billion.
    • (2014) We Are Social UK
    • Kemp, S.1
  • 27
    • 84926427942 scopus 로고    scopus 로고
    • Towards cloud based Big Data analytics for smart future cities
    • Khan, Z., Anjum, A., Soomro, K., and Tahir, M. A. (2015). Towards cloud based Big Data analytics for smart future cities. Journal of Cloud Computing, 4(1), 1-11.
    • (2015) Journal of Cloud Computing , vol.4 , Issue.1 , pp. 1-11
    • Khan, Z.1    Anjum, A.2    Soomro, K.3    Tahir, M.A.4
  • 28
    • 84897562213 scopus 로고    scopus 로고
    • Big-data applications in the government sector
    • Kim, G. H., Trimi, S., and Chung, J. H. (2014). Big-data applications in the government sector. Communications of the ACM, 57(3), 78-85.
    • (2014) Communications of the ACM , vol.57 , Issue.3 , pp. 78-85
    • Kim, G.H.1    Trimi, S.2    Chung, J.H.3
  • 30
    • 84957632624 scopus 로고    scopus 로고
    • Questioning the lambda architecture
    • Retrieved January 8, 2016
    • Kreps, J. (2016). Questioning the lambda architecture. O'Reilly Radar. Retrieved January 8, 2016. http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html.
    • (2016) O'Reilly Radar
    • Kreps, J.1
  • 31
    • 84929159979 scopus 로고    scopus 로고
    • Geospatial Big Data: Challenges and opportunities
    • Lee, J. G. and Kang, M. (2015). Geospatial Big Data: Challenges and opportunities. Big Data Research, 2(2), 74-81.
    • (2015) Big Data Research , vol.2 , Issue.2 , pp. 74-81
    • Lee, J.G.1    Kang, M.2
  • 34
    • 51349151126 scopus 로고    scopus 로고
    • Big Data: How do your data grow
    • Lynch, C. (2008). Big Data: How do your data grow? Nature, 455(7209), 28-29.
    • (2008) Nature , vol.455 , Issue.7209 , pp. 28-29
    • Lynch, C.1
  • 36
    • 85009478803 scopus 로고    scopus 로고
    • Retrieved January 8, 2016
    • Mapr.com. (2016). Lambda architecture. Retrieved January 8, 2016. https://www.mapr.com/developer central/lambda-architecture.
    • (2016) Lambda architecture
  • 38
    • 85052948858 scopus 로고    scopus 로고
    • On adapting a war-gaming discrete event simulator with big data and geospatial modeling toward a predictive model ecosystem for interpersonal violence
    • Baltimore, MD
    • Mhlanga, F. S., Perry, E. L., and Kirchner, R. (2014). On adapting a war-gaming discrete event simulator with big data and geospatial modeling toward a predictive model ecosystem for interpersonal violence. In 2014 Proceedings of the Conference for Information Systems Applied Research, Baltimore, MD, pp. 1-14. Available at http://proc.conisar.org/2014 /pdf/3305.pdf.
    • (2014) 2014 Proceedings of the Conference for Information Systems Applied Research , pp. 1-14
    • Mhlanga, F.S.1    Perry, E.L.2    Kirchner, R.3
  • 41
    • 85015884347 scopus 로고    scopus 로고
    • Quantum computing for Big Data analysis
    • Pandey, A. and Ramesh, V. (2015). Quantum computing for Big Data analysis. History, 14(43), 98-104.
    • (2015) History , vol.14 , Issue.43 , pp. 98-104
    • Pandey, A.1    Ramesh, V.2
  • 42
    • 84952636621 scopus 로고    scopus 로고
    • Spatial and temporal epidemiological analysis in the Big Data era
    • Pfeiffer, D. U. and Stevens, K. B. (2015). Spatial and temporal epidemiological analysis in the Big Data era. Preventive Veterinary Medicine, 122(1), 213-220.
    • (2015) Preventive Veterinary Medicine , vol.122 , Issue.1 , pp. 213-220
    • Pfeiffer, D.U.1    Stevens, K.B.2
  • 43
    • 84937781197 scopus 로고    scopus 로고
    • Translating Big Data into big climate ideas
    • Pickard, B. R., Baynes, J., Mehaffey, M., and Neale, A. C. (2015). Translating Big Data into big climate ideas. Solutions, 6(1), 64-73.
    • (2015) Solutions , vol.6 , Issue.1 , pp. 64-73
    • Pickard, B.R.1    Baynes, J.2    Mehaffey, M.3    Neale, A.C.4
  • 44
    • 84961627543 scopus 로고    scopus 로고
    • Streaming Big Data processing in datacenter clouds
    • Ranjan, R. (2014). Streaming Big Data processing in datacenter clouds. Cloud Computing, IEEE, 1(1), 78-83.
    • (2014) Cloud Computing, IEEE , vol.1 , Issue.1 , pp. 78-83
    • Ranjan, R.1
  • 45
    • 84934756523 scopus 로고    scopus 로고
    • Exascale computing and Big Data
    • Reed, D. A. and Dongarra, J. (2015). Exascale computing and Big Data. Communications of the ACM, 58(7), 56-68.
    • (2015) Communications of the ACM , vol.58 , Issue.7 , pp. 56-68
    • Reed, D.A.1    Dongarra, J.2
  • 46
    • 84900835291 scopus 로고    scopus 로고
    • Gartner: 10 critical tech trends for the next five years
    • Retrieved January 8
    • Savitz, E. (2012a). Gartner: 10 critical tech trends for the next five years. Forbes. Retrieved January 8, 2016. http://www.forbes.com/sites/ericsavitz/2012/10/22/gartner-10-critical-tech-trends-for -the-next-five-years.
    • (2012) Forbes
    • Savitz, E.1
  • 47
    • 85052941422 scopus 로고    scopus 로고
    • Gartner: Top 10 strategic technology trends for 2013
    • Retrieved January 8
    • Savitz, E. (2012b). Gartner: Top 10 strategic technology trends for 2013. Forbes. Retrieved January 8, 2016. http://www.forbes.com/sites/ericsavitz/2012/10/23/gartner-top-10-strategic-technology -trends-for-2013.
    • (2012) Forbes
    • Savitz, E.1
  • 50
    • 85045761746 scopus 로고    scopus 로고
    • The Spatiotemporal Epidemiological Modeler (STEM) Project
    • Retrieved January 8, 2016
    • Stefan Edlund, Y. (2016). The Spatiotemporal Epidemiological Modeler (STEM) Project. Eclipse.org. Retrieved January 8, 2016. http://www.eclipse.org/stem.
    • (2016) Eclipse.org
    • Stefan Edlund, Y.1
  • 52
    • 85045749494 scopus 로고    scopus 로고
    • Retrieved January 8
    • US Environmental Protection Agency. (2015). EnviroAtlas. Retrieved January 8, 2016. http://enviro atlas.epa.gov/enviroatlas.
    • (2015) EnviroAtlas
  • 58
    • 84901752298 scopus 로고    scopus 로고
    • The design of water resources and hydropower cloud GIS platform based on Big Data
    • Springer Berlin Heidelberg
    • Wang, X. and Sun, Z. (2013). The design of water resources and hydropower cloud GIS platform based on Big Data. In Geo-Informatics in Resource Management and Sustainable Ecosystem (pp. 313-322). Springer Berlin Heidelberg.
    • (2013) Geo-Informatics in Resource Management and Sustainable Ecosystem , pp. 313-322
    • Wang, X.1    Sun, Z.2
  • 59
    • 85052950569 scopus 로고    scopus 로고
    • 5 coolest government cloud projects
    • (n.d.). Retrieved January 8
    • Wired. (n.d.). 5 coolest government cloud projects. Wired. Retrieved January 8, 2016. http://www .wired.com/insights/2012/08/5-coolest-gov-cloud-projects.
    • (2016) Wired


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.