메뉴 건너뛰기




Volumn 41, Issue 1, 2017, Pages

Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images

Author keywords

Expectation maximization; Fuzzy C means; Gaussian mixture model; MR brain image segmentation

Indexed keywords

ALGORITHM; ANALYTICAL ERROR; ARTICLE; BRAIN SIZE; CONTROLLED STUDY; EXPECTATION MAXIMIZATION; FUZZY C MEAN; FUZZY SYSTEM; IMAGE ANALYSIS; IMAGE RECONSTRUCTION; IMAGE SEGMENTATION; INFORMATION PROCESSING; NEUROIMAGING; NOISE; NUCLEAR MAGNETIC RESONANCE IMAGING; QUALITATIVE ANALYSIS; QUANTITATIVE ANALYSIS; BRAIN; DIAGNOSTIC IMAGING; FUZZY LOGIC; HUMAN; IMAGE PROCESSING; PROCEDURES;

EID: 85003794062     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-016-0662-7     Document Type: Article
Times cited : (35)

References (29)
  • 1
    • 84957609538 scopus 로고    scopus 로고
    • Image segmentation methods and applications in MRI brain images
    • Yazdani, S., Yusof, R., Karimian, A., Pashna, M., and Hematian, A., Image segmentation methods and applications in MRI brain images. IETE Tech. Rev. 32:413–427, 2015.
    • (2015) IETE Tech. Rev. , vol.32 , pp. 413-427
    • Yazdani, S.1    Yusof, R.2    Karimian, A.3    Pashna, M.4    Hematian, A.5
  • 2
    • 0034575445 scopus 로고    scopus 로고
    • Current methods in medical image segmentation
    • COI: 1:CAS:528:DC%2BD3cXnsVaktb0%3D, PID: 11701515
    • Pham, D.L., Xu, C., and Prince, J.L., Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2:315–337, 2000.
    • (2000) Annu. Rev. Biomed. Eng. , vol.2 , pp. 315-337
    • Pham, D.L.1    Xu, C.2    Prince, J.L.3
  • 3
    • 33746015928 scopus 로고    scopus 로고
    • Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images. Curr. Med
    • Liew, A. W.-C., Yan, H., Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images. Curr. Med. Imaging Rev. 2006.
    • (2006) Imaging Rev
    • Liew, A.W.-C.1    Yan, H.2
  • 4
    • 0037255814 scopus 로고    scopus 로고
    • A unifying framework for partial volume segmentation of brain MR images
    • PID: 12703764
    • Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging. 22(1):105–119, 2003.
    • (2003) IEEE Trans. Med. Imaging. , vol.22 , Issue.1 , pp. 105-119
    • Van Leemput, K.1    Maes, F.2    Vandermeulen, D.3    Suetens, P.4
  • 5
    • 84856246435 scopus 로고    scopus 로고
    • Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem
    • Nguyen, T.M., and Wu, Q.M.J., Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem. IEEE Trans. Syst. Man Cybern. 42(1):193–202, 2012.
    • (2012) IEEE Trans. Syst. Man Cybern. , vol.42 , Issue.1 , pp. 193-202
    • Nguyen, T.M.1    Wu, Q.M.J.2
  • 6
    • 81355150938 scopus 로고    scopus 로고
    • Spatial based expectation maximizing (EM)
    • COI: 1:STN:280:DC%2BC38%2Fgt1Cnug%3D%3D, PID: 22029864
    • Balafar, M.A., Spatial based expectation maximizing (EM). Diagn. Pathol. 6:103, 2011.
    • (2011) Diagn. Pathol. , vol.6 , pp. 103
    • Balafar, M.A.1
  • 7
    • 84894424025 scopus 로고    scopus 로고
    • Gaussian mixture model based segmentation methods for brain MRI images
    • Balafar, M.A., Gaussian mixture model based segmentation methods for brain MRI images. Artif. Intell. Rev. 41(3):429–439, 2012.
    • (2012) Artif. Intell. Rev. , vol.41 , Issue.3 , pp. 429-439
    • Balafar, M.A.1
  • 8
    • 84920085835 scopus 로고    scopus 로고
    • A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity
    • PID: 25304717
    • Xie, M., Gao, J., Zhu, C., and Zhou, Y., A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity. Med. Biol. Eng. Comput. 53(1):23–35, 2015.
    • (2015) Med. Biol. Eng. Comput. , vol.53 , Issue.1 , pp. 23-35
    • Xie, M.1    Gao, J.2    Zhu, C.3    Zhou, Y.4
  • 9
    • 33748123943 scopus 로고    scopus 로고
    • Constrained gaussian mixture model framework for auotmatic segmentation of MR brain images
    • PID: 16967808
    • Greenspan, H., Ruf, A., and Goldberger, J., Constrained gaussian mixture model framework for auotmatic segmentation of MR brain images. IEEE Trans. Med. Imaging. 25(9):1233–1245, 2006.
    • (2006) IEEE Trans. Med. Imaging. , vol.25 , Issue.9 , pp. 1233-1245
    • Greenspan, H.1    Ruf, A.2    Goldberger, J.3
  • 11
    • 24344477133 scopus 로고    scopus 로고
    • An intelligent modified fuzzy, c-means based algorithm for bias estimation and segmentation of brain MRI
    • Siyal, M.Y., and Yu, L., An intelligent modified fuzzy, c-means based algorithm for bias estimation and segmentation of brain MRI. Pattern Recogn. Lett. 26:2052–2062, 2005.
    • (2005) Pattern Recogn. Lett. , vol.26 , pp. 2052-2062
    • Siyal, M.Y.1    Yu, L.2
  • 12
    • 84944279013 scopus 로고    scopus 로고
    • Improved fuzzy C-means based particle swarm optimization (PSO) initialization and outlierrejection with level set methods for MR brainimage segmentation
    • Mekhmoukh, A., and Mokrani, K., Improved fuzzy C-means based particle swarm optimization (PSO) initialization and outlierrejection with level set methods for MR brainimage segmentation. Comput. Methods Prog. Biomed. 122(2):266–281, 2015.
    • (2015) Comput. Methods Prog. Biomed. , vol.122 , Issue.2 , pp. 266-281
    • Mekhmoukh, A.1    Mokrani, K.2
  • 13
    • 85016969828 scopus 로고    scopus 로고
    • An improved fuzzy algorithm for image segmentation using peak detection, spatial information and reallocation
    • Zhang, X., Wang, G., Su, Q., Guo, Q., Zhang, C., and Chen, B., An improved fuzzy algorithm for image segmentation using peak detection, spatial information and reallocation. Soft Computing:1–9, 2015.
    • (2015) Soft Computing , pp. 1-9
    • Zhang, X.1    Wang, G.2    Su, Q.3    Guo, Q.4    Zhang, C.5    Chen, B.6
  • 14
    • 84893094088 scopus 로고    scopus 로고
    • Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation
    • Zhao, F., Fan, J., and Liu, H., Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Systems with Applications. 41:4083–4093, 2014.
    • (2014) Expert Systems with Applications , vol.41 , pp. 4083-4093
    • Zhao, F.1    Fan, J.2    Liu, H.3
  • 15
    • 84897115227 scopus 로고    scopus 로고
    • Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation
    • Ji, Z., Liu, J., Cao, G., Sun, Q., and Chen, Q., Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn. 47:2454–2466, 2014.
    • (2014) Pattern Recogn. , vol.47 , pp. 2454-2466
    • Ji, Z.1    Liu, J.2    Cao, G.3    Sun, Q.4    Chen, Q.5
  • 16
    • 84928826260 scopus 로고    scopus 로고
    • Evaluation of k-means and fuzzy C-means segmentation of MR images of brain
    • Madhukumar, S., and Santhiyakumari, N., Evaluation of k-means and fuzzy C-means segmentation of MR images of brain. Egypt. J. Radiol. Nucl. Med. 46:475–479, 2015.
    • (2015) Egypt. J. Radiol. Nucl. Med. , vol.46 , pp. 475-479
    • Madhukumar, S.1    Santhiyakumari, N.2
  • 17
    • 84905560701 scopus 로고    scopus 로고
    • Image segmentation with spatial constrained K-mean algorithm and dual-tree complex wavelet transform
    • PID: 24994513
    • Zhang, J., Jiang, W., Wang, R., Wang, L., and Brain, M.R., Image segmentation with spatial constrained K-mean algorithm and dual-tree complex wavelet transform. J. Med. Syst. 38:93, 2014.
    • (2014) J. Med. Syst. , vol.38 , pp. 93
    • Zhang, J.1    Jiang, W.2    Wang, R.3    Wang, L.4    Brain, M.R.5
  • 18
    • 84944684442 scopus 로고    scopus 로고
    • Brain image segmentation based on morphological pyramid and fuzzy C-mean clustering
    • Ali, H., Elmogy, M., El-Daydamony, E., Atwan, A., and Multi-resolution, M.R.I., Brain image segmentation based on morphological pyramid and fuzzy C-mean clustering. Arab. J. Sci. Eng. 40(11):3173–3185, 2015.
    • (2015) Arab. J. Sci. Eng. , vol.40 , Issue.11 , pp. 3173-3185
    • Ali, H.1    Elmogy, M.2    El-Daydamony, E.3    Atwan, A.4    Multi-resolution, M.R.I.5
  • 19
    • 84894902227 scopus 로고    scopus 로고
    • A nonlocal energy minimization approach to brain image segmentation with simultaneous bias field estimation and denoising
    • Chen, Z., Wang, J., Kong, D., and Dong, F., A nonlocal energy minimization approach to brain image segmentation with simultaneous bias field estimation and denoising. Mach. Vis. Appl. 25:529–544, 2014.
    • (2014) Mach. Vis. Appl. , vol.25 , pp. 529-544
    • Chen, Z.1    Wang, J.2    Kong, D.3    Dong, F.4
  • 20
    • 84888197958 scopus 로고    scopus 로고
    • An effective method for segmentation of MR brain images using the ant colony optimization algorithm
    • PID: 23563793
    • Taherdangkoo, M., Bagheri, M.H., Yazdi, M., and Andriole, K.P., An effective method for segmentation of MR brain images using the ant colony optimization algorithm. J. Digit. Imaging. 26:1116–1123, 2013.
    • (2013) J. Digit. Imaging. , vol.26 , pp. 1116-1123
    • Taherdangkoo, M.1    Bagheri, M.H.2    Yazdi, M.3    Andriole, K.P.4
  • 21
    • 84926435543 scopus 로고    scopus 로고
    • An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation
    • PID: 25837416
    • Huang, C., and Zeng, L., An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation. PLoS One. 10(4):e0120399, 2015.
    • (2015) PLoS One , vol.10 , Issue.4
    • Huang, C.1    Zeng, L.2
  • 22
    • 84929310304 scopus 로고    scopus 로고
    • Segmentation of MR image using local and global region based geodesic model
    • COI: 1:CAS:528:DC%2BC2MXhsV2jsL7E, PID: 25971306
    • Li, X., Jiang, D., Shi, Y., and Li, W., Segmentation of MR image using local and global region based geodesic model. BioMed. Eng. OnLine. 14:8, 2015.
    • (2015) BioMed. Eng. OnLine. , vol.14 , pp. 8
    • Li, X.1    Jiang, D.2    Shi, Y.3    Li, W.4
  • 23
    • 85003879418 scopus 로고    scopus 로고
    • S. S., Gaussian mixture model with the inclusion of spatial factor and pixel re-labelling: Application to MR brain image segmentation. Arab. J. Sci
    • Prakash, R. M., Kumari, R. S. S., Gaussian mixture model with the inclusion of spatial factor and pixel re-labelling: Application to MR brain image segmentation. Arab. J. Sci. Eng. 2016.
    • (2016) Eng
    • Prakash, R.M.1    Kumari, R.2
  • 24
    • 84975297743 scopus 로고    scopus 로고
    • Fuzzy C means integrated with spatial information and contrast enhancement for segmentation of MR brain images
    • Prakash, R.M., and Kumari, R.S.S., Fuzzy C means integrated with spatial information and contrast enhancement for segmentation of MR brain images. Int. J. Imaging Syst. Technol. 26(2):116–123, 2016.
    • (2016) Int. J. Imaging Syst. Technol. , vol.26 , Issue.2 , pp. 116-123
    • Prakash, R.M.1    Kumari, R.S.S.2
  • 26
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A.P., Laird, N.M., and Rubin, D.B., Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39:1–38, 1977.
    • (1977) J. R. Stat. Soc. , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 27
    • 0036684357 scopus 로고    scopus 로고
    • Carson, C., Belongie, S., Greenspan, H., and Malik, J., Blobworld: image segmentation using expectation-maximization and its application to image querying, 24(8):1026–1038
    • Carson, C., Belongie, S., Greenspan, H., and Malik, J., Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24(8):1026–1038.
    • IEEE Trans. Pattern Anal. Mach. Intell.
  • 29
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters
    • Dunn, J., A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J. Cybern. 3:32–57, 1974.
    • (1974) J. Cybern. , vol.3 , pp. 32-57
    • Dunn, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.