메뉴 건너뛰기




Volumn 47, Issue 9, 2014, Pages 3143-3157

Bayesian estimation of Dirichlet mixture model with variational inference

Author keywords

Bayesian estimation; Dirichlet distribution; Extended factorized approximation; Gamma prior; LSF quantization; Mixture modeling; Multiview depth image enhancement; Relative convexity; Variational inference

Indexed keywords

BAYESIAN NETWORKS; IMAGE ENHANCEMENT; MIXTURES; PROBABILITY DISTRIBUTIONS;

EID: 84900821630     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.04.002     Document Type: Article
Times cited : (108)

References (58)
  • 5
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J.D. Banfield, and A.E. Raftery Model-based Gaussian and non-Gaussian clustering Biometrics 49 3 1993 803 821
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 8
    • 80053127168 scopus 로고    scopus 로고
    • Bayesian estimation of beta mixture models with variational inference
    • Z. Ma, and A. Leijon Bayesian estimation of beta mixture models with variational inference IEEE Trans. Pattern Anal. Mach. Intell. 33 11 2011 2160 2173
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.11 , pp. 2160-2173
    • Ma, Z.1    Leijon, A.2
  • 9
    • 84879395510 scopus 로고    scopus 로고
    • A variational Bayes beta mixture model for feature selection in DNA methylation studies
    • 1350005
    • Z. Ma, A.E. Teschendorff, A variational Bayes beta mixture model for feature selection in DNA methylation studies, J. Bioinform. Comput. Biol. 11 (4) (2013) 1350005 (19 pp.)
    • (2013) J. Bioinform. Comput. Biol , vol.11 , Issue.4
    • Ma, Z.1    Teschendorff, A.E.2
  • 10
    • 7444239786 scopus 로고    scopus 로고
    • Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application
    • N. Bouguila, D. Ziou, and J. Vaillancourt Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application IEEE Trans. Image Process. 13 11 2004 1533 1543
    • (2004) IEEE Trans. Image Process , vol.13 , Issue.11 , pp. 1533-1543
    • Bouguila, N.1    Ziou, D.2    Vaillancourt, J.3
  • 12
    • 84869057727 scopus 로고    scopus 로고
    • Variational learning for finite Dirichlet mixture models and applications
    • W. Fan, N. Bouguila, and D. Ziou Variational learning for finite Dirichlet mixture models and applications IEEE Trans. Neural Netw. Learn. Syst. 23 5 2012 762 774
    • (2012) IEEE Trans. Neural Netw. Learn. Syst , vol.23 , Issue.5 , pp. 762-774
    • Fan, W.1    Bouguila, N.2    Ziou, D.3
  • 13
    • 84880522911 scopus 로고    scopus 로고
    • Vector quantization of LSF parameters with a mixture of Dirichlet distributions
    • Z. Ma, A. Leijon, and W.B. Kleijn Vector quantization of LSF parameters with a mixture of Dirichlet distributions IEEE Trans. Audio Speech Lang. Process. 21 2013 1777 1790
    • (2013) IEEE Trans. Audio Speech Lang. Process , vol.21 , pp. 1777-1790
    • Ma, Z.1    Leijon, A.2    Kleijn, W.B.3
  • 15
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • D.M. Blei, and M.I. Jordan Variational inference for Dirichlet process mixtures Bayesian Anal. 1 2005 121 144
    • (2005) Bayesian Anal , vol.1 , pp. 121-144
    • Blei, D.M.1    Jordan, M.I.2
  • 17
    • 84874126433 scopus 로고
    • Bayesian non-parametrics and the probabilistic approach to modeling
    • (2013)
    • Z. Ghahramani, Bayesian non-parametrics and the probabilistic approach to modelling. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 (1984) (2013) 20110553
    • (1984) Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci , vol.371 , pp. 20110553
    • Ghahramani, Z.1
  • 18
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul An introduction to variational methods for graphical models Mach. Learn. 37 2 1999 183 233
    • (1999) Mach. Learn , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 19
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • MIT Press, Cambridge, MA, USA
    • T.S. Jaakkola, Tutorial on variational approximation methods, in: Advanced Mean Field Methods: Theory and Practice, MIT Press, Cambridge, MA, USA, 2000, pp. 129-159
    • (2000) Advanced Mean Field Methods: Theory and Practice , pp. 129-129
    • Jaakkola, T.S.1
  • 20
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • MIT Press, Cambridge, MA, USA
    • T.S. Jaakkola, Tutorial on variational approximation methods, in: Advances in Mean Field Methods, MIT Press, Cambridge, MA, USA, 2001, pp. 129-159
    • (2001) Advances in Mean Field Methods , pp. 129-129
    • Jaakkola, T.S.1
  • 22
    • 52449116403 scopus 로고    scopus 로고
    • A correlated topic model of Science
    • D.M. Blei, and J.D. Lafferty A correlated topic model of Science Ann. Appl. Stat. 1 2007 17 35
    • (2007) Ann. Appl. Stat , vol.1 , pp. 17-35
    • Blei, D.M.1    Lafferty, J.D.2
  • 23
    • 77952563025 scopus 로고    scopus 로고
    • Variational inference for large-scale models of discrete choice
    • M. Braun, and J. McAuliffe Variational inference for large-scale models of discrete choice J. Am. Stat. Assoc. 105 2010 324 335
    • (2010) J. Am. Stat. Assoc , vol.105 , pp. 324-335
    • Braun, M.1    McAuliffe, J.2
  • 25
    • 79959816308 scopus 로고    scopus 로고
    • Modeling speech line spectral frequencies with Dirichlet mixture models
    • Z. Ma, A. Leijon, Modeling speech line spectral frequencies with Dirichlet mixture models, in: Proceedings of INTERSPEECH, 2010, pp. 2370-2373
    • (2010) Proceedings of INTERSPEECH , pp. 2370-2370
    • Ma, Z.1    Leijon, A.2
  • 27
    • 37549004071 scopus 로고    scopus 로고
    • Weighted pseudometric discriminatory power improvement using a Bayesian logistic regression model based on a variational method
    • R. Ksantini, D. Ziou, B. Colin, and F. Dubeau Weighted pseudometric discriminatory power improvement using a Bayesian logistic regression model based on a variational method IEEE Trans. Pattern Anal. Mach. Intell. 30 2 2008 253 266
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell , vol.30 , Issue.2 , pp. 253-266
    • Ksantini, R.1    Ziou, D.2    Colin, B.3    Dubeau, F.4
  • 31
    • 84947379310 scopus 로고
    • Concepts of independence for proportions with a generalization of the Dirichlet distribution
    • R.J. Connor, and J.E. Mosimann Concepts of independence for proportions with a generalization of the Dirichlet distribution J. Am. Stat. Assoc. 64 325 1969 194 206
    • (1969) J. Am. Stat. Assoc , vol.64 , Issue.325 , pp. 194-206
    • Connor, R.J.1    Mosimann, J.E.2
  • 33
    • 0002077742 scopus 로고
    • Quantization of LPC parameters
    • Elsevier, Amsterdam, The Netherlands
    • K.K. Paliwal, W.B. Kleijn, Quantization of LPC parameters, in: Speech Coding and Synthesis, Elsevier, Amsterdam, The Netherlands, pp. 433-466, 1995
    • (1995) Speech Coding and Synthesis , pp. 433-466
    • Paliwal, K.K.1    Kleijn, W.B.2
  • 34
    • 0037228685 scopus 로고    scopus 로고
    • Bounded support Gaussian mixture modeling of speech spectra
    • J. Lindblom, and J. Samuelsson Bounded support Gaussian mixture modeling of speech spectra IEEE Trans. Speech Audio Process. 11 1 2003 88 99
    • (2003) IEEE Trans. Speech Audio Process , vol.11 , Issue.1 , pp. 88-99
    • Lindblom, J.1    Samuelsson, J.2
  • 35
    • 0037366444 scopus 로고    scopus 로고
    • PDF optimized parametric vector quantization of speech line spectral frequencies
    • A.D. Subramaniam, and B.D. Rao PDF optimized parametric vector quantization of speech line spectral frequencies IEEE Trans. Speech Audio Process. 11 2 2003 130 142
    • (2003) IEEE Trans. Speech Audio Process , vol.11 , Issue.2 , pp. 130-142
    • Subramaniam, A.D.1    Rao, B.D.2
  • 38
    • 33748038432 scopus 로고    scopus 로고
    • Empirical lower bound on the bitrate for the transparent memoryless coding of wideband LPC parameters
    • S. So, and K.K. Paliwal Empirical lower bound on the bitrate for the transparent memoryless coding of wideband LPC parameters IEEE Signal Process. Lett. 13 9 2006 569 572
    • (2006) IEEE Signal Process. Lett , vol.13 , Issue.9 , pp. 569-572
    • So, S.1    Paliwal, K.K.2
  • 39
    • 84856722355 scopus 로고    scopus 로고
    • The Bayesian information criterion background, derivation, and applications
    • A.A. Neath, and J.E. Cavanaugh The Bayesian information criterion background, derivation, and applications Wiley Interdiscip. Rev. Comput. Stat. 4 2 2012 199 203
    • (2012) Wiley Interdiscip. Rev. Comput. Stat , vol.4 , Issue.2 , pp. 199-203
    • Neath, A.A.1    Cavanaugh, J.E.2
  • 41
    • 79952992374 scopus 로고    scopus 로고
    • State of the art in stereoscopic and autostereoscopic displays
    • H. Urey, K. Chellappan, E. Erden, and P.A. Surman State of the art in stereoscopic and autostereoscopic displays Proc. IEEE 99 4 2011 540 555
    • (2011) Proc. IEEE , vol.99 , Issue.4 , pp. 540-555
    • Urey, H.1    Chellappan, K.2    Erden, E.3    Surman, P.A.4
  • 42
    • 79952986823 scopus 로고    scopus 로고
    • 3-D video representation using depth maps
    • K. Müller, P. Merkle, and T. Wiegand 3-D video representation using depth maps Proc. IEEE 99 4 2011 643 656
    • (2011) Proc. IEEE , vol.99 , Issue.4 , pp. 643-656
    • Müller, K.1    Merkle, P.2    Wiegand, T.3
  • 43
  • 46
    • 0036537472 scopus 로고    scopus 로고
    • A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
    • D. Scharstein, and R. Szeliski A taxonomy and evaluation of dense two-frame stereo correspondence algorithms Int. J. Comput. Vision 47 2002 7 42
    • (2002) Int. J. Comput. Vision , vol.47 , pp. 7-42
    • Scharstein, D.1    Szeliski, R.2
  • 47
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Y. Boykov, and V. Kolmogorov An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision IEEE Trans. Pattern Anal. Mach. Intell. 26 9 2004 1124 1137
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 50
  • 54
    • 0004220095 scopus 로고
    • 1st ed. IEEE Computer Society Press Los Alamitos, CA, USA
    • G. Wolberg Digital Image Warping 1st ed. 1994 IEEE Computer Society Press Los Alamitos, CA, USA
    • (1994) Digital Image Warping
    • Wolberg, G.1
  • 58
    • 78650854649 scopus 로고    scopus 로고
    • MPEG ISO/IEC JTC1/SC29/WG11, release 3.5, September
    • MPEG, View Synthesis Software Manual, ISO/IEC JTC1/SC29/WG11, release 3.5, September 2009.
    • (2009) View Synthesis Software Manual


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.