-
1
-
-
41749099273
-
Cellular oxygen sensing in health and disease
-
Mole D.R., Ratcliffe P.J. Cellular oxygen sensing in health and disease. Pediatr. Nephrol. 2008;23:681-694. doi: 10.1007/s00467-007-0632-x.
-
(2008)
Pediatr. Nephrol
, vol.23
, pp. 681-694
-
-
Mole, D.R.1
Ratcliffe, P.J.2
-
2
-
-
84940866922
-
Oxygen sensing and homeostasis
-
Prabhakar N.R., Semenza G.L. Oxygen sensing and homeostasis. Physiology (Bethesda) 2015;30:340-348. doi: 10.1152/physiol.00022.2015.
-
(2015)
Physiology (Bethesda)
, vol.30
, pp. 340-348
-
-
Prabhakar, N.R.1
Semenza, G.L.2
-
3
-
-
34547153223
-
Gene regulation under low oxygen: Holding your breath for transcription
-
Rocha S. Gene regulation under low oxygen: Holding your breath for transcription. Trends Biochem. Sci.2007;32:389-397. doi: 10.1016/j.tibs.2007.06.005.
-
(2007)
Trends Biochem. Sci
, vol.32
, pp. 389-397
-
-
Rocha, S.1
-
4
-
-
84898818725
-
Grow (2): The HIF system, energy homeostasis and the cell cycle
-
Moniz S., Biddlestone J., Rocha S. Grow (2): The HIF system, energy homeostasis and the cell cycle. Histol. Histopathol. 2014;29:589-600.
-
(2014)
Histol. Histopathol
, vol.29
, pp. 589-600
-
-
Moniz, S.1
Biddlestone, J.2
Rocha, S.3
-
5
-
-
33748187417
-
Regulating cellular oxygen sensing by hydroxylation
-
Fandrey J., Gorr T.A., Gassmann M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res.2006;71:642-651. doi: 10.1016/j.cardiores.2006.05.005.
-
(2006)
Cardiovasc Res
, vol.71
, pp. 642-651
-
-
Fandrey, J.1
Gorr, T.A.2
Gassmann, M.3
-
6
-
-
84905079134
-
The multifaceted von Hippel-Lindau tumour suppressor protein
-
Robinson C.M., Ohh M. The multifaceted von Hippel-Lindau tumour suppressor protein. FEBS Lett.2014;588:2704-2711. doi: 10.1016/j.febslet.2014.02.026.
-
(2014)
FEBS Lett
, vol.588
, pp. 2704-2711
-
-
Robinson, C.M.1
Ohh, M.2
-
7
-
-
70649088952
-
Signalling cross talk of the HIF system: Involvement of the fih protein
-
Coleman M.L., Ratcliffe P.J. Signalling cross talk of the HIF system: Involvement of the fih protein. Curr. Pharm. Des. 2009;15:3904-3907. doi: 10.2174/138161209789649448.
-
(2009)
Curr. Pharm. Des.
, vol.15
, pp. 3904-3907
-
-
Coleman, M.L.1
Ratcliffe, P.J.2
-
8
-
-
1642315195
-
Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases
-
Koivunen P., Hirsila M., Gunzler V., Kivirikko K.I., Myllyharju J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 2004;279:9899-9904. doi: 10.1074/jbc.M312254200.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 9899-9904
-
-
Koivunen, P.1
Hirsila, M.2
Gunzler, V.3
Kivirikko, K.I.4
Myllyharju, J.5
-
9
-
-
27844514169
-
Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression
-
Kasper L.H., Boussouar F., Boyd K., Xu W., Biesen M., Rehg J., Baudino T.A., Cleveland J.L., Brindle P.K. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. Embo. J.2005;24:3846-3858. doi: 10.1038/sj.emboj.7600846.
-
(2005)
Embo. J
, vol.24
, pp. 3846-3858
-
-
Kasper, L.H.1
Boussouar, F.2
Boyd, K.3
Xu, W.4
Biesen, M.5
Rehg, J.6
Baudino, T.A.7
Cleveland, J.L.8
Brindle, P.K.9
-
10
-
-
77955284188
-
The asparaginyl hydroxylase factor inhibiting HIF-1α is an essential regulator of metabolism
-
Zhang N., Fu Z., Linke S., Chicher J., Gorman J.J., Visk D., Haddad G.G., Poellinger L., Peet D.J., Powell F., et al. The asparaginyl hydroxylase factor inhibiting HIF-1α is an essential regulator of metabolism. Cell Metab.2010;11:364-378. doi: 10.1016/j.cmet.2010.03.001.
-
(2010)
Cell Metab
, vol.11
, pp. 364-378
-
-
Zhang, N.1
Fu, Z.2
Linke, S.3
Chicher, J.4
Gorman, J.J.5
Visk, D.6
Haddad, G.G.7
Poellinger, L.8
Peet, D.J.9
Powell, F.10
-
11
-
-
17644392469
-
Methylation: Lost in hydroxylation?
-
Trewick S.C., McLaughlin P.J., Allshire R.C. Methylation: Lost in hydroxylation? EMBO Rep. 2005;6:315-320. doi: 10.1038/sj.embor.7400379.
-
(2005)
EMBO Rep
, vol.6
, pp. 315-320
-
-
Trewick, S.C.1
McLaughlin, P.J.2
Allshire, R.C.3
-
12
-
-
0037449811
-
Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α
-
Elkins J.M., Hewitson K.S., McNeill L.A., Seibel J.F., Schlemminger I., Pugh C.W., Ratcliffe P.J., Schofield C.J. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α J. Biol. Chem. 2003;278:1802-1806. doi: 10.1074/jbc.C200644200.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 1802-1806
-
-
Elkins, J.M.1
Hewitson, K.S.2
McNeill, L.A.3
Seibel, J.F.4
Schlemminger, I.5
Pugh, C.W.6
Ratcliffe, P.J.7
Schofield, C.J.8
-
13
-
-
84907347748
-
Chromatin and oxygen sensing in the context of jmjc histone demethylases
-
Shmakova A., Batie M., Druker J., Rocha S. Chromatin and oxygen sensing in the context of jmjc histone demethylases. Biochem. J. 2014;462:385-395. doi: 10.1042/BJ20140754.
-
(2014)
Biochem. J
, vol.462
, pp. 385-395
-
-
Shmakova, A.1
Batie, M.2
Druker, J.3
Rocha, S.4
-
14
-
-
80755153672
-
Chromatin as an oxygen sensor and active player in the hypoxia response
-
Melvin A., Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal.2012;24:35-43. doi: 10.1016/j.cellsig.2011.08.019.
-
(2012)
Cell Signal
, vol.24
, pp. 35-43
-
-
Melvin, A.1
Rocha, S.2
-
15
-
-
84871433719
-
Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase
-
Sanchez-Fernandez E.M., Tarhonskaya H., Al-Qahtani K., Hopkinson R.J., McCullagh J.S., Schofield C.J., Flashman E. Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochem. J.2013;449:491-496. doi: 10.1042/BJ20121155.
-
(2013)
Biochem. J
, vol.449
, pp. 491-496
-
-
Sanchez-Fernandez, E.M.1
Tarhonskaya, H.2
Al-Qahtani, K.3
Hopkinson, R.J.4
McCullagh, J.S.5
Schofield, C.J.6
Flashman, E.7
-
16
-
-
61349088682
-
The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF
-
Beyer S., Kristensen M.M., Jensen K.S., Johansen J.V., Staller P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem. 2008;283:36542-36552. doi: 10.1074/jbc.M804578200.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 36542-36552
-
-
Beyer, S.1
Kristensen, M.M.2
Jensen, K.S.3
Johansen, J.V.4
Staller, P.5
-
17
-
-
58949097017
-
Regulation of jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α
-
Pollard P., Loenarz C., Mole D., McDonough M., Gleadle J., Schofield C., Ratcliffe P. Regulation of jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α Biochem. J. 2008;416:387-394. doi: 10.1042/BJ20081238.
-
(2008)
Biochem. J
, vol.416
, pp. 387-394
-
-
Pollard, P.1
Loenarz, C.2
Mole, D.3
McDonough, M.4
Gleadle, J.5
Schofield, C.6
Ratcliffe, P.7
-
18
-
-
45449110185
-
Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem. Biophys. Res
-
Wellmann S., Bettkober M., Zelmer A., Seeger K., Faigle M., Eltzschig H.K., Bührer C. Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem. Biophys. Res. Commun. 2008;372:892-897. doi: 10.1016/j.bbrc.2008.05.150.
-
(2008)
Commun
, vol.372
, pp. 892-897
-
-
Wellmann, S.1
Bettkober, M.2
Zelmer, A.3
Seeger, K.4
Faigle, M.5
Eltzschig, H.K.6
Bührer, C.7
-
19
-
-
73549088729
-
Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1α enhances hypoxic gene expression and tumor growth
-
Krieg A.J., Rankin E.B., Chan D., Razorenova O., Fernandez S., Giaccia A.J. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1α enhances hypoxic gene expression and tumor growth. Mol. Cell. Biol. 2010;30:344-353. doi: 10.1128/MCB.00444-09.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 344-353
-
-
Krieg, A.J.1
Rankin, E.B.2
Chan, D.3
Razorenova, O.4
Fernandez, S.5
Giaccia, A.J.6
-
20
-
-
84856955226
-
The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C
-
Niu X., Zhang T., Liao L., Zhou L., Lindner D.J., Zhou M., Rini B., Yan Q., Yang H. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. 2012;31:776-786. doi: 10.1038/onc.2011.266.
-
(2012)
Oncogene.
, vol.31
, pp. 776-786
-
-
Niu, X.1
Zhang, T.2
Liao, L.3
Zhou, L.4
Lindner, D.J.5
Zhou, M.6
Rini, B.7
Yan, Q.8
Yang, H.9
-
21
-
-
32844454603
-
Histone demethylation by a family of jmjc domain-containing proteins
-
Tsukada Y., Fang J., Erdjument-Bromage H., Warren M.E., Borchers C.H., Tempst P., Zhang Y. Histone demethylation by a family of jmjc domain-containing proteins. Nature. 2006;439:811-816. doi: 10.1038/nature04433.
-
(2006)
Nature
, vol.439
, pp. 811-816
-
-
Tsukada, Y.1
Fang, J.2
Erdjument-Bromage, H.3
Warren, M.E.4
Borchers, C.H.5
Tempst, P.6
Zhang, Y.7
-
22
-
-
79953815457
-
KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia
-
He J., Nguyen A.T., Zhang Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood. 2011;117:3869-3880. doi: 10.1182/blood-2010-10-312736.
-
(2011)
Blood
, vol.117
, pp. 3869-3880
-
-
He, J.1
Nguyen, A.T.2
Zhang, Y.3
-
23
-
-
84937579754
-
Kdm2a/b lysine demethylases regulate canonical Wnt signaling by modulating the stability of nuclear β-catenin
-
Lu L., Gao Y., Zhang Z., Cao Q., Zhang X., Zou J., Cao Y. Kdm2a/b lysine demethylases regulate canonical Wnt signaling by modulating the stability of nuclear β-catenin. Dev. Cell. 2015;33:660-674. doi: 10.1016/j.devcel.2015.04.006.
-
(2015)
Dev. Cell
, vol.33
, pp. 660-674
-
-
Lu, L.1
Gao, Y.2
Zhang, Z.3
Cao, Q.4
Zhang, X.5
Zou, J.6
Cao, Y.7
-
24
-
-
76249100563
-
Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65
-
Lu T., Jackson M.W., Wang B., Yang M., Chance M.R., Miyagi M., Gudkov A.V., Stark G.R. Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. USA.2010;107:46-51. doi: 10.1073/pnas.0912493107.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 46-51
-
-
Lu, T.1
Jackson, M.W.2
Wang, B.3
Yang, M.4
Chance, M.R.5
Miyagi, M.6
Gudkov, A.V.7
Stark, G.R.8
-
25
-
-
84873343056
-
Kdm2b promotes pancreatic cancer via polycomb-dependent and-independent transcriptional programs
-
Tzatsos A., Paskaleva P., Ferrari F., Deshpande V., Stoykova S., Contino G., Wong K.-K., Lan F., Trojer P., Park P.J. Kdm2b promotes pancreatic cancer via polycomb-dependent and-independent transcriptional programs. J. Clin. Investig. 2013;123:727. doi: 10.1172/JCI64535.
-
(2013)
J. Clin. Investig
, vol.123
, pp. 727
-
-
Tzatsos, A.1
Paskaleva, P.2
Ferrari, F.3
Deshpande, V.4
Stoykova, S.5
Contino, G.6
Wong, K.-K.7
Lan, F.8
Trojer, P.9
Park, P.J.10
-
26
-
-
84937774684
-
Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer
-
Liu H., Liu L., Holowatyj A., Jiang Y., Yang Z.Q. Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer. Mol. Carcinog. 2016;55:977-990. doi: 10.1002/mc.22341.
-
(2016)
Mol. Carcinog
, vol.55
, pp. 977-990
-
-
Liu, H.1
Liu, L.2
Holowatyj, A.3
Jiang, Y.4
Yang, Z.Q.5
-
27
-
-
84968761386
-
Lysine demethylase 2a promotes stemness and angiogenesis of breast cancer by upregulating jagged1
-
Chen J.Y., Li C.F., Chu P.Y., Lai Y.S., Chen C.H., Jiang S.S., Hou M.F., Hung W.C. Lysine demethylase 2a promotes stemness and angiogenesis of breast cancer by upregulating jagged1. Oncotarget. 2016;7:27689-27710. doi: 10.18632/oncotarget.8381.
-
(2016)
Oncotarget
, vol.7
, pp. 27689-27710
-
-
Chen, J.Y.1
Li, C.F.2
Chu, P.Y.3
Lai, Y.S.4
Chen, C.H.5
Jiang, S.S.6
Hou, M.F.7
Hung, W.C.8
-
28
-
-
84906831786
-
Hypoxia activates IKK-NF-κB and the immune response in drosophila melanogaster
-
Bandarra D., Biddlestone J., Mudie S., Muller H.A., Rocha S. Hypoxia activates IKK-NF-κB and the immune response in drosophila melanogaster. Biosci. Reports. 2014;34:e00127. doi: 10.1042/BSR20140095.
-
(2014)
Biosci. Reports
, vol.34
-
-
Bandarra, D.1
Biddlestone, J.2
Mudie, S.3
Muller, H.A.4
Rocha, S.5
-
29
-
-
84922485491
-
HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals
-
Bandarra D., Biddlestone J., Mudie S., Muller H.A., Rocha S. HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals. Dis. Model Mech. 2015;8:169-181. doi: 10.1242/dmm.017285.
-
(2015)
Dis. Model Mech
, vol.8
, pp. 169-181
-
-
Bandarra, D.1
Biddlestone, J.2
Mudie, S.3
Muller, H.A.4
Rocha, S.5
-
30
-
-
84863393849
-
Omero: Flexible, model-driven data management for experimental biology
-
Allan C., Burel J.M., Moore J., Blackburn C., Linkert M., Loynton S., Macdonald D., Moore W.J., Neves C., Patterson A., et al. Omero: Flexible, model-driven data management for experimental biology. Nat. Methods.2012;9:245-253. doi: 10.1038/nmeth.1896.
-
(2012)
Nat. Methods
, vol.9
, pp. 245-253
-
-
Allan, C.1
Burel, J.M.2
Moore, J.3
Blackburn, C.4
Linkert, M.5
Loynton, S.6
Macdonald, D.7
Moore, W.J.8
Neves, C.9
Patterson, A.10
-
31
-
-
84876497474
-
Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CPG islands of developmental genes. Nat
-
He J., Shen L., Wan M., Taranova O., Wu H., Zhang Y. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CPG islands of developmental genes. Nat. Cell Biol. 2013;15:373-384. doi: 10.1038/ncb2702.
-
(2013)
Cell Biol
, vol.15
, pp. 373-384
-
-
He, J.1
Shen, L.2
Wan, M.3
Taranova, O.4
Wu, H.5
Zhang, Y.6
-
32
-
-
79958797383
-
F-box protein 10, an NF-κB-dependent anti-apoptotic protein, regulates trail-induced apoptosis through modulating c-Fos/c-Flip pathway
-
Ge R., Wang Z., Zeng Q., Xu X., Olumi A.F. F-box protein 10, an NF-κB-dependent anti-apoptotic protein, regulates trail-induced apoptosis through modulating c-Fos/c-Flip pathway. Cell Death Differ. 2011;18:1184-1195. doi: 10.1038/cdd.2010.185.
-
(2011)
Cell Death Differ
, vol.18
, pp. 1184-1195
-
-
Ge, R.1
Wang, Z.2
Zeng, Q.3
Xu, X.4
Olumi, A.F.5
-
33
-
-
78049364235
-
Mechanism of hypoxia-induced NF-κB
-
Culver C., Sundqvist A., Mudie S., Melvin A., Xirodimas D., Rocha S. Mechanism of hypoxia-induced NF-κB. Mol.Cellular Biol. 2010;30:4901-4921. doi: 10.1128/MCB.00409-10.
-
(2010)
Mol.Cellular Biol.
, vol.30
, pp. 4901-4921
-
-
Culver, C.1
Sundqvist, A.2
Mudie, S.3
Melvin, A.4
Xirodimas, D.5
Rocha, S.6
-
34
-
-
84894260794
-
Extensive regulation of the non-coding transcriptome by hypoxia: Role of HIF in releasing paused RNApol2
-
Choudhry H., Schodel J., Oikonomopoulos S., Camps C., Grampp S., Harris A.L., Ratcliffe P.J., Ragoussis J., Mole D.R. Extensive regulation of the non-coding transcriptome by hypoxia: Role of HIF in releasing paused RNApol2. EMBO Rep. 2014;15:70-76. doi: 10.1002/embr.201337642.
-
(2014)
EMBO Rep.
, vol.15
, pp. 70-76
-
-
Choudhry, H.1
Schodel, J.2
Oikonomopoulos, S.3
Camps, C.4
Grampp, S.5
Harris, A.L.6
Ratcliffe, P.J.7
Ragoussis, J.8
Mole, D.R.9
-
35
-
-
84890060286
-
Kdm2a promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling
-
Wagner K.W., Alam H., Dhar S.S., Giri U., Li N., Wei Y., Giri D., Cascone T., Kim J.H., Ye Y., et al. Kdm2a promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J. Clin. Investig.2013;123:5231-5246. doi: 10.1172/JCI68642.
-
(2013)
J. Clin. Investig
, vol.123
, pp. 5231-5246
-
-
Wagner, K.W.1
Alam, H.2
Dhar, S.S.3
Giri, U.4
Li, N.5
Wei, Y.6
Giri, D.7
Cascone, T.8
Kim, J.H.9
Ye, Y.10
-
36
-
-
84925536058
-
Histone demethylase Kdm2a promotes tumor cell growth and migration in gastric cancer
-
Huang Y., Liu Y., Yu L., Chen J., Hou J., Cui L., Ma D., Lu W. Histone demethylase Kdm2a promotes tumor cell growth and migration in gastric cancer. Tumour. Biol. 2015;36:271-278. doi: 10.1007/s13277-014-2630-5.
-
(2015)
Tumour. Biol
, vol.36
, pp. 271-278
-
-
Huang, Y.1
Liu, Y.2
Yu, L.3
Chen, J.4
Hou, J.5
Cui, L.6
Ma, D.7
Lu, W.8
-
37
-
-
84949656746
-
Mild glucose starvation induces KDM2A-mediated H3K36me2 demethylation through AMPK to reduce rRNA transcription and cell proliferation
-
Tanaka Y., Yano H., Ogasawara S., Yoshioka S., Imamura H., Okamoto K., Tsuneoka M. Mild glucose starvation induces KDM2A-mediated H3K36me2 demethylation through AMPK to reduce rRNA transcription and cell proliferation. Mol. Cellular Biol. 2015;35:4170-4184. doi: 10.1128/MCB.00579-15.
-
(2015)
Mol. Cellular Biol
, vol.35
, pp. 4170-4184
-
-
Tanaka, Y.1
Yano, H.2
Ogasawara, S.3
Yoshioka, S.4
Imamura, H.5
Okamoto, K.6
Tsuneoka, M.7
-
38
-
-
77951976595
-
JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation
-
Tanaka Y., Okamoto K., Teye K., Umata T., Yamagiwa N., Suto Y., Zhang Y., Tsuneoka M. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. Embo. J. 2010;29:1510-1522. doi: 10.1038/emboj.2010.56.
-
(2010)
Embo. J
, vol.29
, pp. 1510-1522
-
-
Tanaka, Y.1
Okamoto, K.2
Teye, K.3
Umata, T.4
Yamagiwa, N.5
Suto, Y.6
Zhang, Y.7
Tsuneoka, M.8
-
39
-
-
84955257260
-
Atm-mediated KDM2A phosphorylation is required for the DNA damage repair
-
Cao L.L., Wei F., Du Y., Song B., Wang D., Shen C., Lu X., Cao Z., Yang Q., Gao Y., et al. Atm-mediated KDM2A phosphorylation is required for the DNA damage repair. Oncogene. 2016;35:402. doi: 10.1038/onc.2015.311.
-
(2016)
Oncogene
, vol.35
, pp. 402
-
-
Cao, L.L.1
Wei, F.2
Du, Y.3
Song, B.4
Wang, D.5
Shen, C.6
Lu, X.7
Cao, Z.8
Yang, Q.9
Gao, Y.10
-
40
-
-
84938676098
-
HIF-1α in colorectal carcinoma: Review of the literature
-
Ioannou M., Paraskeva E., Baxevanidou K., Simos G., Papamichali R., Papacharalambous C., Samara M., Koukoulis G. HIF-1α in colorectal carcinoma: Review of the literature. J. Buon. 2015;20:680-689.
-
(2015)
J. Buon
, vol.20
, pp. 680-689
-
-
Ioannou, M.1
Paraskeva, E.2
Baxevanidou, K.3
Simos, G.4
Papamichali, R.5
Papacharalambous, C.6
Samara, M.7
Koukoulis, G.8
-
41
-
-
80054771537
-
Genetic and functional studies implicate hif1alpha as a 14q kidney cancer suppressor gene
-
Shen C., Beroukhim R., Schumacher S.E., Zhou J., Chang M., Signoretti S., Kaelin W.G., Jr. Genetic and functional studies implicate hif1alpha as a 14q kidney cancer suppressor gene. Cancer Discov. 2011;1:222-235. doi: 10.1158/2159-8290.CD-11-0098.
-
(2011)
Cancer Discov
, vol.1
, pp. 222-235
-
-
Shen, C.1
Beroukhim, R.2
Schumacher, S.E.3
Zhou, J.4
Chang, M.5
Signoretti, S.6
Kaelin, W.G.7
|