메뉴 건너뛰기




Volumn , Issue 9781447127598, 2012, Pages 95-112

Rough set based decision support—models easy to interpret

Author keywords

Decision support; Ensemble feature selection; Ensembles; Feature subset selection; Rough sets

Indexed keywords


EID: 85032194969     PISSN: 16103947     EISSN: 21978441     Source Type: Book Series    
DOI: 10.1007/978-1-4471-2760-4_6     Document Type: Chapter
Times cited : (20)

References (60)
  • 1
    • 50749133891 scopus 로고
    • A decision support system for evaluating intangible investments
    • Kivijärvi, H., Tuominen, M.: A decision support system for evaluating intangible investments. Comput. Ind. Eng. 25(1-4), 353-356 (1993)
    • (1993) Comput. Ind. Eng , vol.25 , Issue.1-4 , pp. 353-356
    • Kivijärvi, H.1    Tuominen, M.2
  • 2
    • 85032194940 scopus 로고    scopus 로고
    • The model and tools for creating a decision support system with the application of activity based costing (ABC-DSS)
    • Colorado Springs, USA
    • Januszewski, A.: The model and tools for creating a decision support system with the application of activity based costing (ABC-DSS). In: Proc. of the 6th Int. Conf. on Business Information Systems, Colorado Springs, USA (2003)
    • (2003) Proc. of the 6th Int. Conf. on Business Information Systems
    • Januszewski, A.1
  • 8
    • 84880392065 scopus 로고    scopus 로고
    • Symbolic methodology in numeric data mining: Relational techniques for financial applications
    • Kovalerchuk, B., Vityaev, E., Yupusov, H.: Symbolic methodology in numeric data mining: relational techniques for financial applications. Comput. Engin. Finance Sci. J. (2002)
    • (2002) Comput. Engin. Finance Sci. J
    • Kovalerchuk, B.1    Vityaev, E.2    Yupusov, H.3
  • 10
    • 79955080702 scopus 로고    scopus 로고
    • A decision tree-rough set hybrid system for stock market trend prediction
    • Nair, B.B., Mohandas, V.P., Sakthivel, N.R.: A decision tree-rough set hybrid system for stock market trend prediction. Int. J. Comput. Appl. 6(9), 1-6 (2010)
    • (2010) Int. J. Comput. Appl , vol.6 , Issue.9 , pp. 1-6
    • Nair, B.B.1    Mohandas, V.P.2    Sakthivel, N.R.3
  • 11
    • 67649088036 scopus 로고    scopus 로고
    • A neural network classifier with rough set-based feature selection to classify multiclass IC package products
    • Hung, Y.H.: A neural network classifier with rough set-based feature selection to classify multiclass IC package products. Adv. Eng. Inform. 23(3), 348-357 (2009)
    • (2009) Adv. Eng. Inform , vol.23 , Issue.3 , pp. 348-357
    • Hung, Y.H.1
  • 12
  • 14
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3-27 (2007)
    • (2007) Inf. Sci , vol.177 , Issue.1 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 15
    • 85032227619 scopus 로고    scopus 로고
    • Feature selection, classification and rule generation using rough sets
    • Peters, G., Lingras, P., Ślȩzak, D., Yao, Y. (eds.), Springer, Berlin
    • Banka, H., Mitra, S.: Feature selection, classification and rule generation using rough sets. In: Peters, G., Lingras, P., Ślȩzak, D., Yao, Y. (eds.) Rough Sets: Selected Methods and Applications in Management and Engineering. Springer, Berlin (2012)
    • (2012) Rough Sets: Selected Methods and Applications in Management and Engineering
    • Banka, H.1    Mitra, S.2
  • 16
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Świniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognit. Lett. 24(6), 833-849 (2003)
    • (2003) Pattern Recognit. Lett , vol.24 , Issue.6 , pp. 833-849
    • Świniarski, R.W.1    Skowron, A.2
  • 18
    • 70349816400 scopus 로고    scopus 로고
    • Rough sets and functional dependencies in data: Foundations of association reducts
    • Springer, Berlin
    • Ślȩzak, D.: Rough sets and functional dependencies in data: foundations of association reducts. In: Transactions on Computational Science 5. LNCS, vol. 5540, pp. 182-205. Springer, Berlin (2009)
    • (2009) Transactions on Computational Science 5. LNCS , vol.5540 , pp. 182-205
    • Ślȩzak, D.1
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182 (2003)
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 22
    • 85021112585 scopus 로고
    • Feature subset selection using the wrapper method: Overfitting and dynamic search space topology
    • Kohavi, R., Sommerfeld, D.: Feature subset selection using the wrapper method: overfitting and dynamic search space topology. In: Proc. of KDD 1995, pp. 192-197 (1995)
    • (1995) Proc. of KDD 1995 , pp. 192-197
    • Kohavi, R.1    Sommerfeld, D.2
  • 24
    • 38049059088 scopus 로고    scopus 로고
    • Adaptive aspects of combining approximation spaces
    • Pal, S.K., Polkowski, L., Skowron, A. (eds.), Springer, Berlin
    • Wróblewski, J.: Adaptive aspects of combining approximation spaces. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 139-156. Springer, Berlin (2004)
    • (2004) Rough-Neural Computing , pp. 139-156
    • Wróblewski, J.1
  • 25
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 27
    • 80054085494 scopus 로고    scopus 로고
    • Rough-set-inspired feature subset selection, classifier construction, and rule aggregation
    • Springer, Berlin
    • Ślȩzak, D., Widz, S.: Rough-set-inspired feature subset selection, classifier construction, and rule aggregation. In: Proc. of RSKT. LNCS, vol. 6954, pp. 81-88. Springer, Berlin (2011)
    • (2011) Proc. of RSKT. LNCS , vol.6954 , pp. 81-88
    • Ślȩzak, D.1    Widz, S.2
  • 28
    • 77549084388 scopus 로고    scopus 로고
    • Processing online analytics with classification and association rule mining
    • Lim, A.H.L., Lee, C.: Processing online analytics with classification and association rule mining. Knowl.-Based Syst. 23(3), 248-255 (2010)
    • (2010) Knowl.-Based Syst , vol.23 , Issue.3 , pp. 248-255
    • Lim, A.H.L.1    Lee, C.2
  • 29
    • 78651592982 scopus 로고    scopus 로고
    • Decision support system based on data warehouse
    • Bao, Y., Zhang, L.: Decision support system based on data warehouse. World Acad. Sci. Eng. Technol. 71, 172-176 (2010)
    • (2010) World Acad. Sci. Eng. Technol , vol.71 , pp. 172-176
    • Bao, Y.1    Zhang, L.2
  • 31
    • 85032230079 scopus 로고    scopus 로고
    • Online analytical mining: Architecture and challenges
    • Panchal, H.M.: Online analytical mining: architecture and challenges. IUP J. Syst. Manag. 8(2), 40-45 (2010)
    • (2010) IUP J. Syst. Manag , vol.8 , Issue.2 , pp. 40-45
    • Panchal, H.M.1
  • 32
    • 0041971208 scopus 로고    scopus 로고
    • The decision-support characteristics of ERP systems
    • Holsapple, C.W., Sena, M.P.: The decision-support characteristics of ERP systems. Int. J. Hum.-Comput. Interact. 16(1), 101-123 (2003)
    • (2003) Int. J. Hum.-Comput. Interact , vol.16 , Issue.1 , pp. 101-123
    • Holsapple, C.W.1    Sena, M.P.2
  • 33
    • 0027073653 scopus 로고
    • Energy planning and environmental quality management: A decision support system approach
    • Liu, B.C., Tzeng, G.H., Hsieh, C.T.: Energy planning and environmental quality management: a decision support system approach. Energy Econ. 14(4), 302-307 (1992)
    • (1992) Energy Econ , vol.14 , Issue.4 , pp. 302-307
    • Liu, B.C.1    Tzeng, G.H.2    Hsieh, C.T.3
  • 39
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97, 245-271 (1997)
    • (1997) Artif. Intell , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 40
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. J. 97(1-2), 273-324 (1997)
    • (1997) Artif. Intell. J , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 42
    • 80054089341 scopus 로고    scopus 로고
    • Applications of approximate reducts to the feature selection problem
    • Springer, Berlin
    • Janusz, A., Stawicki, S.: Applications of approximate reducts to the feature selection problem. In: Proc. of RSKT. LNCS, vol. 6954, pp. 45-50. Springer, Berlin (2011)
    • (2011) Proc. of RSKT. LNCS , vol.6954 , pp. 45-50
    • Janusz, A.1    Stawicki, S.2
  • 44
    • 84865047244 scopus 로고    scopus 로고
    • Three-way decisions using rough sets
    • Peters, G., Lingras, P., Ślȩzak, D., Yao, Y. (eds.), Springer, Berlin
    • Yao, Y.: Three-way decisions using rough sets. In: Peters, G., Lingras, P., Ślȩzak, D., Yao, Y. (eds.) Rough Sets: Selected Methods and Applications in Management and Engineering. Springer, Berlin (2012)
    • (2012) Rough Sets: Selected Methods and Applications in Management and Engineering
    • Yao, Y.1
  • 46
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6, 21-45 (2006)
    • (2006) IEEE Circuits Syst. Mag , vol.6 , pp. 21-45
    • Polikar, R.1
  • 47
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva, L.I., Whitaker, C.: Measures of diversity in classifier ensembles. Mach. Learn. 51, 181-207 (2003)
    • (2003) Mach. Learn , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.2
  • 48
    • 85127438349 scopus 로고    scopus 로고
    • Learning with ensembles: How overfitting can be useful
    • Touretzky, D., Mozer, M., Hasselmo, M. (eds.), MIT Press, Cambridge
    • Sollich, P., Krogh, A.: Learning with ensembles: how overfitting can be useful. In: Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 190-196. MIT Press, Cambridge (1996)
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 190-196
    • Sollich, P.1    Krogh, A.2
  • 49
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263-286 (1995)
    • (1995) J. Artif. Intell. Res , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 52
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2), 256-285 (1995)
    • (1995) Inf. Comput , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 54
    • 56049119676 scopus 로고    scopus 로고
    • Robust feature selection using ensemble feature selection techniques
    • Springer, Berlin
    • Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Proc. of ECML PKDD 2008, Part II. LNAI, vol. 5212, pp. 313-325. Springer, Berlin (2008)
    • (2008) Proc. of ECML PKDD 2008, Part II. LNAI , vol.5212 , pp. 313-325
    • Saeys, Y.1    Abeel, T.2    Van de Peer, Y.3
  • 55
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832-844 (1998)
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 56
    • 33845317307 scopus 로고    scopus 로고
    • Feature selection for ensembles using the multiobjective optimization approach
    • Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for ensembles using the multiobjective optimization approach. Stud. Comput. Intell. 16, 49-74 (2006)
    • (2006) Stud. Comput. Intell , vol.16 , pp. 49-74
    • Oliveira, L.S.1    Morita, M.2    Sabourin, R.3
  • 57
    • 39149086962 scopus 로고    scopus 로고
    • An experimental study of methods combining multiple classifiers-diversified both by feature selection and bootstrap sampling
    • Atanassov, T.K., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.), Akademicka Oficyna Wydawnicza EXIT, Warsaw
    • Stefanowski, J.: An experimental study of methods combining multiple classifiers-diversified both by feature selection and bootstrap sampling. In: Atanassov, T.K., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Issues in the Representation and Processing of Uncertain and Imprecise Information, pp. 337-354. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2005)
    • (2005) Issues in the Representation and Processing of Uncertain and Imprecise Information , pp. 337-354
    • Stefanowski, J.1
  • 58
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • Tang, E.K., Suganthan, P.N., Yao, X.: An analysis of diversity measures. Mach. Learn. 65(1), 247-271 (2006)
    • (2006) Mach. Learn , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 59
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection. Inf. Fusion 6(1), 83-98 (2005)
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 60
    • 79952747001 scopus 로고    scopus 로고
    • Evolutionary inspired optimization of feature subset ensembles
    • Ślȩzak, D., Widz, S.: Evolutionary inspired optimization of feature subset ensembles. In: Proc. of NaBIC, pp. 437-442 (2010)
    • (2010) Proc. of NaBIC , pp. 437-442
    • Ślȩzak, D.1    Widz, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.