메뉴 건너뛰기




Volumn 23, Issue 3, 2014, Pages 1430-1441

Multilabel image classification via high-order label correlation driven active learning

Author keywords

Active learning; high order label correlation; multilabel classification

Indexed keywords

ACTIVE LEARNING; EFFICIENT LEARNING; ITERATIVE LEARNING ALGORITHMS; LABEL CORRELATIONS; LARGE-SCALE PROBLEM; LEARNING MECHANISM; MULTI-LABEL CLASSIFICATIONS; SUPERVISED MACHINE LEARNING;

EID: 84897712481     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2014.2302675     Document Type: Article
Times cited : (58)

References (54)
  • 1
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin, "Queries and concept learning," Mach. Learn., vol. 2, no. 4, pp. 319-342, 1988.
    • (1988) Mach. Learn. , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 2
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • Madison, WI, USA, Tech. Rep. 1648
    • B. Settles, "Active learning literature survey," Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1648, 2009.
    • (2009) Dept. Comput. Sci., Univ. Wisconsin-Madison
    • Settles, B.1
  • 4
    • 39749186006 scopus 로고    scopus 로고
    • Labelme: A database and web-based tool for image annotation
    • B. Russell, A. Torralba, K. Murphy, and W. Freeman, "Labelme: A database and web-based tool for image annotation," Int. J. Comput. Vis., vol. 77, no. 1, pp. 157-173, 2008.
    • (2008) Int. J. Comput. Vis. , vol.77 , Issue.1 , pp. 157-173
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.4
  • 5
    • 0001927585 scopus 로고
    • On information and sufficiency
    • S. Kullback and R. Leibler, "On information and sufficiency," Ann. Math. Stat., vol. 22, no. 1, pp. 79-86, 1951.
    • (1951) Ann. Math. Stat. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 6
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielínski, and A. Swami, "Mining association rules between sets of items in large databases," ACM SIGMOD Rec., vol. 22, no. 2, pp. 207-216, 1993.
    • (1993) ACM SIGMOD Rec. , vol.22 , Issue.2 , pp. 207-216
    • Agrawal, R.1    Imielínski, T.2    Swami, A.3
  • 8
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Mar.
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res., vol. 2, pp. 45-66, Mar. 2002.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 9
    • 0031209604 scopus 로고    scopus 로고
    • Selective Sampling Using the Query by Committee Algorithm
    • Y. Freund, H. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Mach. Learn., vol. 28, nos. 2-3, pp. 133-168, 1997. (Pubitemid 127506338)
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 11
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • K. Brinker, "Incorporating diversity in active learning with support vector machines," in Proc. 20th Int. Conf. Mach. Learn., vol. 3. 2003, pp. 59-66.
    • (2003) Proc. 20th Int. Conf. Mach. Learn. , vol.3 , pp. 59-66
    • Brinker, K.1
  • 15
    • 34547974275 scopus 로고    scopus 로고
    • Nonmyopic active learning of gaussian processes: An exploration- exploitation approach
    • A. Krause and C. Guestrin, "Nonmyopic active learning of gaussian processes: An exploration-exploitation approach," in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 449-456.
    • (2007) Proc. 24th Int. Conf. Mach. Learn. , pp. 449-456
    • Krause, A.1    Guestrin, C.2
  • 16
    • 85162011798 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • S.-J. Huang, R. Jin, and Z.-H. Zhou, "Active learning by querying informative and representative examples," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 892-900.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 892-900
    • Huang, S.-J.1    Jin, R.2    Zhou, Z.-H.3
  • 17
    • 85162014861 scopus 로고    scopus 로고
    • Active instance sampling via matrix partition
    • Y. Guo, "Active instance sampling via matrix partition," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 802-810.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 802-810
    • Guo, Y.1
  • 18
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 839-846.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 19
    • 34547176515 scopus 로고    scopus 로고
    • Representative sampling for text classification using support vector machines
    • Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, "Representative sampling for text classification using support vector machines," in Proc. Adv. Inf. Retr., vol. 3. 2003, pp. 393-407.
    • (2003) Proc. Adv. Inf. Retr. , vol.3 , pp. 393-407
    • Xu, Z.1    Yu, K.2    Tresp, V.3    Xu, X.4    Wang, J.5
  • 20
  • 21
    • 33749263388 scopus 로고    scopus 로고
    • Batch mode active learning and its application to medical image classification
    • S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu, "Batch mode active learning and its application to medical image classification," in Proc. 23rd ICML, 2006, pp. 417-424.
    • (2006) Proc. 23rd ICML , pp. 417-424
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 22
    • 51949086514 scopus 로고    scopus 로고
    • Two-dimensional active learning for image classification
    • Jun.
    • G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang, "Two-dimensional active learning for image classification," in Proc. IEEE Conf. CVPR, Jun. 2008, pp. 1-8.
    • (2008) Proc. Conf. CVPR , pp. 1-8
    • Qi, G.1    Hua, X.2    Rui, Y.3    Tang, J.4    Zhang, H.5
  • 23
    • 85167446337 scopus 로고    scopus 로고
    • Multi-task active learning with output constraints
    • Y. Zhang, "Multi-task active learning with output constraints," in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 1-6.
    • (2010) Proc. 24th AAAI Conf. Artif. Intell. , pp. 1-6
    • Zhang, Y.1
  • 24
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: a boosting-based system for text categorization
    • R. Schapire and Y. Singer, "BoosTexter: A boosting-based system for text categorization," Mach. Learn., vol. 39, nos. 2-3, pp. 135-168, 2000. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 25
    • 2542631648 scopus 로고    scopus 로고
    • Kernel methods for multi-labelled classification and categorical regression problems
    • A. Elisseeff and J. Weston, "Kernel methods for multi-labelled classification and categorical regression problems," Adv. Neural Inf. Process. Syst., vol. 14. pp. 681-687, 2002.
    • (2002) Adv. Neural Inf. Process. Syst. , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 32
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative Methods for Multi-labeled Classification
    • Advances in Knowledge Discovery and Data Mining
    • S. Godbole and S. Sarawagi, "Discriminative methods for multi-labeled classification," in Proc. Adv. Knowl. Discovery Data Mining, 2004, pp. 22-30. (Pubitemid 38824880)
    • (2004) LECTURE NOTES IN COMPUTER SCIENCE , Issue.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 33
    • 84860669069 scopus 로고    scopus 로고
    • Batch mode active learning for multi-label image classification with informative label correlation mining
    • Jan.
    • B. Zhang, Y. Wang, and W. Wang, "Batch mode active learning for multi-label image classification with informative label correlation mining," in Proc. IEEE WACV, Jan. 2012, pp. 401-407.
    • (2012) Proc. WACV , pp. 401-407
    • Zhang, B.1    Wang, Y.2    Wang, W.3
  • 34
    • 0018877134 scopus 로고
    • AXIOMATIC DERIVATION OF THE PRINCIPLE OF MAXIMUM ENTROPY AND THE PRINCIPLE OF MINIMUM CROSS-ENTROPY.
    • J. Shore and R. Johnson, "Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy," IEEE Trans. Inf. Theory, vol. 26, no. 1, pp. 26-37, Jan. 1980. (Pubitemid 11451543)
    • (1980) IEEE Transactions on Information Theory , vol.IT-26 , Issue.1 , pp. 26-37
    • Shore John, E.1    Johnson Rodney, W.2
  • 35
    • 0345414074 scopus 로고    scopus 로고
    • An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures
    • Oct.
    • J. Goldberger, S. Gordon, and H. Greenspan, "An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures," in Proc. 9th IEEE Int. Conf. Comput. Vis., Oct. 2003, pp. 487-493.
    • (2003) Proc. 9th Int. Conf. Comput. Vis. , pp. 487-493
    • Goldberger, J.1    Gordon, S.2    Greenspan, H.3
  • 37
    • 0005077356 scopus 로고    scopus 로고
    • Active learning for parameter estimation in Bayesian networks
    • S. Tong and D. Koller, "Active learning for parameter estimation in Bayesian networks," in Proc. NIPS, vol. 13. 2000, pp. 647-653.
    • (2000) Proc. NIPS , vol.13 , pp. 647-653
    • Tong, S.1    Koller, D.2
  • 38
    • 0000314722 scopus 로고    scopus 로고
    • Employing em and pool-based active learning for text classification
    • A. McCallum, K. Nigam et al., "Employing EM and pool-based active learning for text classification," in Proc. ICML, vol. 98. 1998, pp. 350-358.
    • (1998) Proc. ICML , vol.98 , pp. 350-358
    • McCallum, A.1    Nigam, K.2
  • 41
    • 77953188531 scopus 로고    scopus 로고
    • Finding shareable informative patterns and optimal coding matrix for multiclass boosting
    • Sep./Oct.
    • B. Zhang, G. Ye, Y. Wang, J. Xu, and G. Herman, "Finding shareable informative patterns and optimal coding matrix for multiclass boosting," in Proc. IEEE 12th ICCV, Sep./Oct. 2009, pp. 56-63.
    • (2009) Proc. 12th ICCV , pp. 56-63
    • Zhang, B.1    Ye, G.2    Wang, Y.3    Xu, J.4    Herman, G.5
  • 43
    • 36348943725 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Z. Zhou and M. Zhang, "Multi-instance multi-label learning with application to scene classification," in Proc. 20th Annu. Conf. NIPS, 2006, pp. 1-8.
    • (2006) Proc. 20th Annu. Conf. NIPS , pp. 1-8
    • Zhou, Z.1    Zhang, M.2
  • 44
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • O. Maron and A. Ratan, "Multiple-instance learning for natural scene classification," in Proc. 15th ICML, 1998, pp. 341-349.
    • (1998) Proc. 15th ICML , pp. 341-349
    • Maron, O.1    Ratan, A.2
  • 45
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, "Solving the multiple instance problem with axis-parallel rectangles," Artif. Intell., vol. 89, no. 1, pp. 31-71, 1997. (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 47
    • 84860685551 scopus 로고    scopus 로고
    • Multiple-instance learning from multiple perspectives: Combining models for multiple-instance learning
    • Jan.
    • B. Zhang, Y. Wang, and W. Wang, "Multiple-instance learning from multiple perspectives: Combining models for multiple-instance learning," in Proc. IEEE WACV, Jan. 2012, pp. 481-487.
    • (2012) Proc. WACV , pp. 481-487
    • Zhang, B.1    Wang, Y.2    Wang, W.3
  • 48
    • 33947396751 scopus 로고    scopus 로고
    • Solving multi-instance problems with classifier ensemble based on constructive clustering
    • Z.-H. Zhou and M.-L. Zhang, "Solving multi-instance problems with classifier ensemble based on constructive clustering," Knowl. Inf. Syst., vol. 11, no. 2, pp. 155-170, 2007.
    • (2007) Knowl. Inf. Syst. , vol.11 , Issue.2 , pp. 155-170
    • Zhou, Z.-H.1    Zhang, M.-L.2
  • 49
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, "Learning multi-label scene classification," Pattern Recognit., vol. 37, no. 9, pp. 1757-1771, 2004. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 50
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1: A new benchmark collection for text categorization research
    • Dec.
    • D. Lewis, Y. Yang, T. Rose, and F. Li, "Rcv1: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 52
    • 65249129950 scopus 로고    scopus 로고
    • Crowdsourcing for relevance evaluation
    • O. Alonso, D. E. Rose, and B. Stewart, "Crowdsourcing for relevance evaluation," ACM SigIR Forum, vol. 42, no. 2, pp. 9-15, 2008.
    • (2008) ACM SigIR Forum , vol.42 , Issue.2 , pp. 9-15
    • Alonso, O.1    Rose, D.E.2    Stewart, B.3
  • 53
    • 80055052639 scopus 로고    scopus 로고
    • On quality control and machine learning in crowdsourcing
    • M. Lease, "On quality control and machine learning in crowdsourcing," in Proc. Human Comput., 2011, pp. 97-102.
    • (2011) Proc. Human Comput. , pp. 97-102
    • Lease, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.