메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 3196-3202

Self-paced learning for Matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FACTORIZATION;

EID: 84960086094     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (140)

References (36)
  • 1
    • 84893402531 scopus 로고    scopus 로고
    • Teaching classification boundaries to humans
    • Basu, S., and Christensen, J. 2013. Teaching classification boundaries to humans. In AAAI.
    • (2013) AAAI
    • Basu, S.1    Christensen, J.2
  • 3
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9):1124-1137.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 5
    • 24644475872 scopus 로고    scopus 로고
    • Damped Newton algorithms for matrix factorization with missing data
    • Buchanan, A., and Fitzgibbon, A. 2005. Damped Newton algorithms for matrix factorization with missing data. In CVPR.
    • (2005) CVPR
    • Buchanan, A.1    Fitzgibbon, A.2
  • 6
    • 84898819930 scopus 로고    scopus 로고
    • Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition
    • Cabral, R.; De la Torre, F.; Costeira, J. P.; and Bernardino, A. 2013. Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition. In CVPR.
    • (2013) CVPR
    • Cabral, R.1    De La Torre, F.2    Costeira, J.P.3    Bernardino, A.4
  • 8
    • 0028549672 scopus 로고
    • Photometric stereo under a light source with arbitrary motion
    • Hayakawa, H. 1994. Photometric stereo under a light source with arbitrary motion. Journal of the Optical Society of America A 11(11):3079-3089.
    • (1994) Journal of the Optical Society of America A , vol.11 , Issue.11 , pp. 3079-3089
    • Hayakawa, H.1
  • 9
    • 84960132462 scopus 로고    scopus 로고
    • Easy samples first: Self-paced reranking for zero-example multimedia search
    • Jiang, L.; Meng, D.; Mitamura, T; and Hauptmann, A. G. 2014. Easy samples first: Self-paced reranking for zero-example multimedia search. In ACM MM.
    • (2014) ACM MM
    • Jiang, L.1    Meng, D.2    Mitamura, T.3    Hauptmann, A.G.4
  • 10
    • 36849003521 scopus 로고    scopus 로고
    • Towards optimal bag-offeatures for object categorization and semantic video retrieval
    • Jiang, Y; Ngo, C; and Yang, J. 2007. Towards optimal bag-offeatures for object categorization and semantic video retrieval. In CIVR.
    • (2007) CIVR
    • Jiang, Y.1    Ngo, C.2    Yang, J.3
  • 11
    • 33745179218 scopus 로고    scopus 로고
    • 1 norm factorization in the presence of outliers and missing data by alternative convex programming
    • 1 norm factorization in the presence of outliers and missing data by alternative convex programming. In CVPR.
    • (2005) CVPR
    • Ke, Q.1    Kanade, T.2
  • 13
    • 84856638291 scopus 로고    scopus 로고
    • Learning specific-class segmentation from diverse data
    • Kumar, M.; Turki, H.; Preston, D.; and Koller, D. 2011. Learning specific-class segmentation from diverse data. In ICCV.
    • (2011) ICCV
    • Kumar, M.1    Turki, H.2    Preston, D.3    Koller, D.4
  • 14
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • Kumar, M.; Packer, B.; and Koller, D. 2010. Self-paced learning for latent variable models. In NIPS.
    • (2010) NIPS
    • Kumar, M.1    Packer, B.2    Koller, D.3
  • 16
    • 80052880043 scopus 로고    scopus 로고
    • Learning the easy things first: Self-paced visual category discovery
    • Lee, Y, and Grauman, K. 2011. Learning the easy things first: Self-paced visual category discovery. In CVPR.
    • (2011) CVPR
    • Lee, Y.1    Grauman, K.2
  • 18
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds for foreground object detection
    • Li, L.; Huang, W.; Gu, I.; and Tian, Q. 2004. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing 13(11):1459-1472.
    • (2004) IEEE Transactions on Image Processing , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.3    Tian, Q.4
  • 19
    • 84898783301 scopus 로고    scopus 로고
    • Robust matrix factorization with unknown noise
    • Meng, D., and De la Torre, F. 2013. Robust matrix factorization with unknown noise. In ICCV.
    • (2013) ICCV
    • Meng, D.1    De La Torre, F.2
  • 20
    • 84893361849 scopus 로고    scopus 로고
    • A cyclic weighted median method for Li low-rank matrix factorization with missing entries
    • ln
    • Meng, D.; Xu, Z.; Zhang, L.; and Zhao, J. 2013. A cyclic weighted median method for Li low-rank matrix factorization with missing entries. ln AAAI.
    • (2013) AAAI
    • Meng, D.1    Xu, Z.2    Zhang, L.3    Zhao, J.4
  • 21
    • 85162048139 scopus 로고    scopus 로고
    • Large-scale matrix factorization with missing data under additional constraints
    • Mitra, K.; Sheorey, S.; and Chellappa, R. 2010. Large-scale matrix factorization with missing data under additional constraints. In NIPS.
    • (2010) NIPS
    • Mitra, K.1    Sheorey, S.2    Chellappa, R.3
  • 22
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • Mnih, A., and Salakhutdinov, R. 2007. Probabilistic matrix factorization. In NIPS.
    • (2007) NIPS
    • Mnih, A.1    Salakhutdinov, R.2
  • 23
    • 84960132464 scopus 로고    scopus 로고
    • Supervised learning with minimal effort
    • Ni, E., and Ling, C. 2010. Supervised learning with minimal effort. In KDD.
    • (2010) KDD
    • Ni, E.1    Ling, C.2
  • 24
    • 33846228834 scopus 로고    scopus 로고
    • On the Wiberg algorithm for matrix factorization in the presence of missing components
    • Okatani, T, and Deguchi, K. 2007. On the Wiberg algorithm for matrix factorization in the presence of missing components. International Journal of Computer Vision 72(3):329-337.
    • (2007) International Journal of Computer Vision , vol.72 , Issue.3 , pp. 329-337
    • Okatani, T.1    Deguchi, K.2
  • 25
    • 84856673250 scopus 로고    scopus 로고
    • Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms
    • Okatani, T; Yoshida, T; and Deguchi, K. 2011. Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms. In ICCV.
    • (2011) ICCV
    • Okatani, T.1    Yoshida, T.2    Deguchi, K.3
  • 26
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • Salakhutdinov, R., and Mnih, A. 2008. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In ICML.
    • (2008) ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 27
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • Srebro, N., and Jaakkola, T. 2003. Weighted low-rank approximations. In ICML.
    • (2003) ICML
    • Srebro, N.1    Jaakkola, T.2
  • 28
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • Srebro, N.; Rennie, J.; and Jaakkola, T. 2005. Maximum-margin matrix factorization. In NIPS.
    • (2005) NIPS
    • Srebro, N.1    Rennie, J.2    Jaakkola, T.3
  • 29
    • 84887368146 scopus 로고    scopus 로고
    • Self-paced learning for long-term tracking
    • Supancic III,. J., and Ramanan, D. 2013. Self-paced learning for long-term tracking. In CVPR.
    • (2013) CVPR
    • Supancic, J.1    Ramanan, D.2
  • 30
    • 84877780666 scopus 로고    scopus 로고
    • Shifting weights: Adapting object detectors from image to video
    • Tang, K.; Ramanathan, V.; Li, P.; and Koller, D. 2012. Shifting weights: Adapting object detectors from image to video. In NIPS.
    • (2012) NIPS
    • Tang, K.1    Ramanathan, V.2    Li, P.3    Koller, D.4
  • 31
    • 0026943737 scopus 로고
    • Shape and motion from image streams under orthography: A factorization method
    • Tomasi, C, and Kanade, T. 1992. Shape and motion from image streams under orthography: A factorization method. International Journal of Computer Vision 9(2):137-154.
    • (1992) International Journal of Computer Vision , vol.9 , Issue.2 , pp. 137-154
    • Tomasi, C.1    Kanade, T.2
  • 32
    • 84867136661 scopus 로고    scopus 로고
    • Stability of matrix factorization for collaborative filtering
    • Wang, Y, and Xu, H. 2012. Stability of matrix factorization for collaborative filtering. ICML.
    • (2012) ICML
    • Wang, Y.1    Xu, H.2
  • 33
    • 84898822274 scopus 로고    scopus 로고
    • A probabilistic approach to robust matrix factorization
    • Wang, N.; Yao, T; Wang, J.; and Yeung, D. 2012. A probabilistic approach to robust matrix factorization. In ECCV.
    • (2012) ECCV
    • Wang, N.1    Yao, T.2    Wang, J.3    Yeung, D.4
  • 34
    • 48349104603 scopus 로고    scopus 로고
    • Maximum margin matrix factorization for collaborative ranking
    • Weimer, M.; Karatzoglou, A.; Le, Q.; and Smola, A. 2007. Maximum margin matrix factorization for collaborative ranking. In NIPS.
    • (2007) NIPS
    • Weimer, M.1    Karatzoglou, A.2    Le, Q.3    Smola, A.4
  • 35
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted lowrank matrices by convex optimization
    • Wright, J.; Peng, Y; Ma, Y.; Ganesh, A.; and Rao, S. 2009. Robust principal component analysis: Exact recovery of corrupted lowrank matrices by convex optimization. In NIPS.
    • (2009) NIPS
    • Wright, J.1    Peng, Y.2    Ma, Y.3    Ganesh, A.4    Rao, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.