-
1
-
-
77953507107
-
Mitochondrial DNA mutations in disease and aging
-
Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 2010; 51: 440-450.
-
(2010)
Environ Mol Mutagen
, vol.51
, pp. 440-450
-
-
Wallace, D.C.1
-
2
-
-
84884863139
-
Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis
-
Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 2013; 62: 170-185.
-
(2013)
Free Radic Biol Med
, vol.62
, pp. 170-185
-
-
Dasuri, K.1
Zhang, L.2
Keller, J.N.3
-
3
-
-
34548523836
-
Parkinson's disease genetic mutations increase cell susceptibility to stress: Mutant alpha-synuclein enhances H2O2- And Sin-1-induced cell death
-
Jiang H, Wu YC, Nakamura M, Liang Y, Tanaka Y, Holmes S et al. Parkinson's disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H2O2- And Sin-1-induced cell death. Neurobiol Aging 2007; 28: 1709-1717.
-
(2007)
Neurobiol Aging
, vol.28
, pp. 1709-1717
-
-
Jiang, H.1
Wu, Y.C.2
Nakamura, M.3
Liang, Y.4
Tanaka, Y.5
Holmes, S.6
-
4
-
-
84876150097
-
Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo
-
Billia F, Hauck L, Grothe D, Konecny F, Rao V, Kim RH et al. Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo. Proc Natl Acad Sci USA 2013; 110: 6085-6090.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 6085-6090
-
-
Billia, F.1
Hauck, L.2
Grothe, D.3
Konecny, F.4
Rao, V.5
Kim, R.H.6
-
5
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441: 885-889.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
-
6
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441: 880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
-
7
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26: 1749-1760.
-
(2007)
EMBO J
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
8
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16: 1040-1052.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
9
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85: 257-273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
10
-
-
84964603365
-
Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond
-
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 2016; 100: 210-222.
-
(2016)
Free Radic Biol Med
, vol.100
, pp. 210-222
-
-
Bingol, B.1
Sheng, M.2
-
11
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2012; 2: 1002.
-
(2012)
Sci Rep
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
-
12
-
-
84899454281
-
Phosphorylation of Parkin at Serine65 is essential for activation: Elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity
-
Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M et al. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 2014; 4: 130213.
-
(2014)
Open Biol
, vol.4
, pp. 130213
-
-
Kazlauskaite, A.1
Kelly, V.2
Johnson, C.3
Baillie, C.4
Hastie, C.J.5
Peggie, M.6
-
13
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 2014; 460: 127-139.
-
(2014)
Biochem J
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
-
14
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 2014; 205: 143-153.
-
(2014)
J Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
-
15
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014; 510: 162-166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
-
16
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 2015; 209: 111-128.
-
(2015)
J Cell Biol
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
Koyano, F.2
Kimura, M.3
Kosako, H.4
Saeki, Y.5
Tanaka, K.6
-
17
-
-
84929691103
-
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
-
Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, Yanishevski D et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci USA 2015; 112: 6637-6642.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 6637-6642
-
-
Ordureau, A.1
Heo, J.M.2
Duda, D.M.3
Paulo, J.A.4
Olszewski, J.L.5
Yanishevski, D.6
-
18
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20: 1726-1737.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
-
19
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 2011; 286: 19630-19640.
-
(2011)
J Biol Chem
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
20
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183: 795-803.
-
(2008)
J Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
21
-
-
79958219318
-
Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
-
Mao K, Wang K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 2011; 193: 755-767.
-
(2011)
J Cell Biol
, vol.193
, pp. 755-767
-
-
Mao, K.1
Wang, K.2
Zhao, M.3
Xu, T.4
Klionsky, D.J.5
-
22
-
-
84940718214
-
Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways
-
Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T et al. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 2015; 11: 332-343.
-
(2015)
Autophagy
, vol.11
, pp. 332-343
-
-
Hirota, Y.1
Yamashita, S.2
Kurihara, Y.3
Jin, X.4
Aihara, M.5
Saigusa, T.6
-
23
-
-
84868087279
-
ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons
-
Joselin AP, Hewitt SJ, Callaghan SM, Kim RH, Chung YH, Mak TW et al. ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Human Mol Genet 2012; 21: 4888-4903.
-
(2012)
Human Mol Genet
, vol.21
, pp. 4888-4903
-
-
Joselin, A.P.1
Hewitt, S.J.2
Callaghan, S.M.3
Kim, R.H.4
Chung, Y.H.5
Mak, T.W.6
-
24
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8: e1000298.
-
(2010)
PLoS Biol
, vol.8
, pp. e1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
-
25
-
-
84867602835
-
Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
-
Li L, Chen Y, Gibson SB. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 2013; 25: 50-65.
-
(2013)
Cell Signal
, vol.25
, pp. 50-65
-
-
Li, L.1
Chen, Y.2
Gibson, S.B.3
-
26
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132-141.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
27
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-226.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
-
28
-
-
84939820927
-
MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5
-
Nezich CL, Wang C, Fogel AI, Youle RJ. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 2015; 210: 435-450.
-
(2015)
J Cell Biol
, vol.210
, pp. 435-450
-
-
Nezich, C.L.1
Wang, C.2
Fogel, A.I.3
Youle, R.J.4
-
29
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov V, Dotsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014; 53: 167-178.
-
(2014)
Mol Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
Dotsch, V.2
Johansen, T.3
Kirkin, V.4
-
30
-
-
85018270438
-
P62-mediated mitochondrial clustering attenuates apoptosis induced by mitochondrial depolarization
-
Xiao B, Deng X, Lim GGY, Zhou W, Saw WT, Zhou ZD et al. p62-mediated mitochondrial clustering attenuates apoptosis induced by mitochondrial depolarization. Biochim Biophys Acta 2017; 1864: 1308-1317.
-
(2017)
Biochim Biophys Acta
, vol.1864
, pp. 1308-1317
-
-
Xiao, B.1
Deng, X.2
Lim, G.G.Y.3
Zhou, W.4
Saw, W.T.5
Zhou, Z.D.6
|