-
1
-
-
84921699683
-
Flavonoid glycosylation and biological benefits
-
Xiao J, Chen T, Cao H. Flavonoid glycosylation and biological benefits. Biotechnol Adv. 2014. https://doi.org/S0734-9750(14)00092-5.
-
(2014)
Biotechnol Adv
-
-
Xiao, J.1
Chen, T.2
Cao, H.3
-
2
-
-
84892989486
-
Recent advances and uses of grape flavonoids as nutraceuticals
-
Georgiev V, Ananga A, Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients. 2014; 6: 391-415. https://doi.org/nu6010391.
-
(2014)
Nutrients
, vol.6
, pp. 391-415
-
-
Georgiev, V.1
Ananga, A.2
Tsolova, V.3
-
3
-
-
84874002570
-
A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention
-
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013; 138: 2099-107. https://doi.org/S0308-8146(12)01917-6.
-
(2013)
Food Chem
, vol.138
, pp. 2099-2107
-
-
Chen, A.Y.1
Chen, Y.C.2
-
4
-
-
84891559401
-
Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol
-
Huang YB, Lin MW, Chao Y, Huang CT, Tsai YH, Wu PC. Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol. Int J Urol. 2014; 21: 94-8. https://doi.org/10.1111/iju.12179.
-
(2014)
Int J Urol
, vol.21
, pp. 94-98
-
-
Huang, Y.B.1
Lin, M.W.2
Chao, Y.3
Huang, C.T.4
Tsai, Y.H.5
Wu, P.C.6
-
5
-
-
84960379142
-
Protective effects of kaempferol against reactive oxygen speciesinduced hemolysis and its antiproliferative activity on human cancer cells
-
Liao W, Chen L, Ma X, Jiao R, Li X, Wang Y. Protective effects of kaempferol against reactive oxygen speciesinduced hemolysis and its antiproliferative activity on human cancer cells. Eur J Med Chem. 2016; 114: 24-32. https://doi.org/S0223-5234(16)30135-0.
-
(2016)
Eur J Med Chem
, vol.114
, pp. 24-32
-
-
Liao, W.1
Chen, L.2
Ma, X.3
Jiao, R.4
Li, X.5
Wang, Y.6
-
6
-
-
84862907830
-
Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma
-
Gong JH, Shin D, Han SY, Kim JL, Kang YH. Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J Nutr. 2012; 142: 47-56. https://doi.org/jn.111.150748.
-
(2012)
J Nutr
, vol.142
, pp. 47-56
-
-
Gong, J.H.1
Shin, D.2
Han, S.Y.3
Kim, J.L.4
Kang, Y.H.5
-
7
-
-
84964255463
-
Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts
-
Tang XL, Liu JX, Dong W, Li P, Li L, Hou JC, Zheng YQ, Lin CR, Ren JG. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation. 2015; 38: 94-101. https://doi. org/10.1007/s10753-014-0011-2.
-
(2015)
Inflammation
, vol.38
, pp. 94-101
-
-
Tang, X.L.1
Liu, J.X.2
Dong, W.3
Li, P.4
Li, L.5
Hou, J.C.6
Zheng, Y.Q.7
Lin, C.R.8
Ren, J.G.9
-
8
-
-
84904324976
-
Flavones: an important scaffold for medicinal chemistry
-
Singh M, Kaur M, Silakari O. Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem. 2014; 84C: 206-39. https://doi.org/S0223-5234(14)00619-9.
-
(2014)
Eur J Med Chem
, vol.84C
, pp. 206-239
-
-
Singh, M.1
Kaur, M.2
Silakari, O.3
-
9
-
-
84957798907
-
Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models
-
Kim SH, Hwang KA, Choi KC. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J Nutr Biochem. 2016; 28: 70-82. https://doi.org/S0955-2863(15)00278-8.
-
(2016)
J Nutr Biochem
, vol.28
, pp. 70-82
-
-
Kim, S.H.1
Hwang, K.A.2
Choi, K.C.3
-
10
-
-
84969903144
-
Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFRrelated pathway in vitro
-
Lee J, Kim JH. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFRrelated pathway in vitro. PLoS One. 2016; 11: e0155264. https://doi.org/10.1371/journal.pone.0155264.
-
(2016)
PLoS One
, vol.11
-
-
Lee, J.1
Kim, J.H.2
-
11
-
-
84941979069
-
Radiosensitization of non-small cell lung cancer by kaempferol
-
Kuo WT, Tsai YC, Wu HC, Ho YJ, Chen YS, Yao CH. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol Rep. 2015; 34: 2351-6. https://doi. org/10.3892/or.2015.4204.
-
(2015)
Oncol Rep
, vol.34
, pp. 2351-2356
-
-
Kuo, W.T.1
Tsai, Y.C.2
Wu, H.C.3
Ho, Y.J.4
Chen, Y.S.5
Yao, C.H.6
-
12
-
-
84958721746
-
Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway
-
Guo H, Ren F, Zhang L, Zhang X, Yang R, Xie B, Li Z, Hu Z, Duan Z, Zhang J. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol Med Rep. 2016; 13: 2791-800. https://doi.org/10.3892/mmr.2016.4845.
-
(2016)
Mol Med Rep
, vol.13
, pp. 2791-2800
-
-
Guo, H.1
Ren, F.2
Zhang, L.3
Zhang, X.4
Yang, R.5
Xie, B.6
Li, Z.7
Hu, Z.8
Duan, Z.9
Zhang, J.10
-
13
-
-
84941803364
-
Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells
-
Joo JH, Ueda E, Bortner CD, Yang XP, Liao G, Jetten AM. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. Biochem Pharmacol. 2015; 97: 256-68. https://doi.org/S0006-2952(15)00531-6.
-
(2015)
Biochem Pharmacol
, vol.97
, pp. 256-268
-
-
Joo, J.H.1
Ueda, E.2
Bortner, C.D.3
Yang, X.P.4
Liao, G.5
Jetten, A.M.6
-
14
-
-
84988667268
-
Activating transcription factor 4 (ATF4)-ATF3-C/EBP homologous protein (CHOP) cascade shows an essential role in the ER stress-induced sensitization of tetrachlorobenzoquinonechallenged PC12 cells to ROS-mediated apoptosis via death receptor 5 (DR5) signaling
-
Liu Z, Shi Q, Song X, Wang Y, Song E, Song Y. Activating transcription factor 4 (ATF4)-ATF3-C/EBP homologous protein (CHOP) cascade shows an essential role in the ER stress-induced sensitization of tetrachlorobenzoquinonechallenged PC12 cells to ROS-mediated apoptosis via death receptor 5 (DR5) signaling. Chem Res Toxicol. 2016; 29: 1510-8. https://doi.org/10.1021/acs.chemrestox.6b00181.
-
(2016)
Chem Res Toxicol
, vol.29
, pp. 1510-1518
-
-
Liu, Z.1
Shi, Q.2
Song, X.3
Wang, Y.4
Song, E.5
Song, Y.6
-
15
-
-
84900814820
-
Discrepancy of uterine leiomyoma and myometrium to hypoxia-induced endoplasmic reticulum stress after uterine occlusion therapy accounts for therapeutic effect
-
Xie Y, Tao X, Cheng Z, Guan Q, Yang W, Zhu Y. Discrepancy of uterine leiomyoma and myometrium to hypoxia-induced endoplasmic reticulum stress after uterine occlusion therapy accounts for therapeutic effect. Arch Gynecol Obstet. 2014; 289: 1039-45. https://doi. org/10.1007/s00404-013-3100-9.
-
(2014)
Arch Gynecol Obstet
, vol.289
, pp. 1039-1045
-
-
Xie, Y.1
Tao, X.2
Cheng, Z.3
Guan, Q.4
Yang, W.5
Zhu, Y.6
-
16
-
-
84859799949
-
Stress management at the ER: regulators of ER stress-induced apoptosis
-
Gorman AM, Healy SJ, Jager R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther. 2012; 134: 306-16. https://doi. org/S0163-7258(12)00043-5.
-
(2012)
Pharmacol Ther
, vol.134
, pp. 306-316
-
-
Gorman, A.M.1
Healy, S.J.2
Jager, R.3
Samali, A.4
-
17
-
-
84905170020
-
New insights into the roles of CHOP-induced apoptosis in ER stress
-
Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai). 2014; 46: 629-40. https://doi.org/gmu048.
-
(2014)
Acta Biochim Biophys Sin (Shanghai)
, vol.46
, pp. 629-640
-
-
Li, Y.1
Guo, Y.2
Tang, J.3
Jiang, J.4
Chen, Z.5
-
18
-
-
84992035686
-
Autophagy transduces physical constraints into biological responses
-
Dupont N, Codogno P. Autophagy transduces physical constraints into biological responses. Int J Biochem Cell Biol. 2016; 79: 419-26. https://doi.org/S1357-2725(16)30238-2.
-
(2016)
Int J Biochem Cell Biol
, vol.79
, pp. 419-426
-
-
Dupont, N.1
Codogno, P.2
-
19
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008; 451: 1069-75. https://doi.org/nature06639.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
20
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011; 147: 728-41. https://doi.org/S0092-8674(11)01276-1.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
21
-
-
14044277429
-
The molecular machinery of autophagy: unanswered questions
-
Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005; 118: 7-18. https://doi.org/118/1/7.
-
(2005)
J Cell Sci
, vol.118
, pp. 7-18
-
-
Klionsky, D.J.1
-
22
-
-
84974525992
-
Autophagy in colorectal cancer: an important switch from physiology to pathology
-
Burada F, Nicoli ER, Ciurea ME, Uscatu DC, Ioana M, Gheonea DI. Autophagy in colorectal cancer: an important switch from physiology to pathology. World J Gastrointest Oncol. 2015; 7: 271-84. https://doi.org/10.4251/wjgo.v7.i11.271.
-
(2015)
World J Gastrointest Oncol
, vol.7
, pp. 271-284
-
-
Burada, F.1
Nicoli, E.R.2
Ciurea, M.E.3
Uscatu, D.C.4
Ioana, M.5
Gheonea, D.I.6
-
23
-
-
84991036037
-
Autophagy in cancer metastasis
-
Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2016; 36: 1619-30. https://doi.org/onc2016333.
-
(2016)
Oncogene
, vol.36
, pp. 1619-1630
-
-
Mowers, E.E.1
Sharifi, M.N.2
Macleod, K.F.3
-
24
-
-
84979703357
-
Valproic acid induces autophagy by suppressing the Akt/mTOR pathway in human prostate cancer cells
-
Xia Q, Zheng Y, Jiang W, Huang Z, Wang M, Rodriguez R, Jin X. Valproic acid induces autophagy by suppressing the Akt/mTOR pathway in human prostate cancer cells. Oncol Lett. 2016; 12: 1826-32. https://doi.org/10.3892/ol.2016.4880.
-
(2016)
Oncol Lett
, vol.12
, pp. 1826-1832
-
-
Xia, Q.1
Zheng, Y.2
Jiang, W.3
Huang, Z.4
Wang, M.5
Rodriguez, R.6
Jin, X.7
-
25
-
-
84876543464
-
Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells
-
Huang WW, Tsai SC, Peng SF, Lin MW, Chiang JH, Chiu YJ, Fushiya S, Tseng MT, Yang JS. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol. 2013; 42: 2069-77. https://doi.org/10.3892/ijo.2013.1909.
-
(2013)
Int J Oncol
, vol.42
, pp. 2069-2077
-
-
Huang, W.W.1
Tsai, S.C.2
Peng, S.F.3
Lin, M.W.4
Chiang, J.H.5
Chiu, Y.J.6
Fushiya, S.7
Tseng, M.T.8
Yang, J.S.9
-
26
-
-
34548188741
-
Self-eating and self-killing: crosstalk between autophagy and apoptosis
-
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007; 8: 741-52. https://doi.org/nrm2239.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 741-752
-
-
Maiuri, M.C.1
Zalckvar, E.2
Kimchi, A.3
Kroemer, G.4
-
27
-
-
33846211417
-
ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
-
Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007; 14: 230-9. https://doi.org/4401984.
-
(2007)
Cell Death Differ
, vol.14
, pp. 230-239
-
-
Kouroku, Y.1
Fujita, E.2
Tanida, I.3
Ueno, T.4
Isoai, A.5
Kumagai, H.6
Ogawa, S.7
Kaufman, R.J.8
Kominami, E.9
Momoi, T.10
-
28
-
-
34247113888
-
Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II)
-
Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A, Matsuda C, Hayashi YK, Momoi T. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet. 2007; 16: 618-29. https://doi.org/ddm002.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 618-629
-
-
Fujita, E.1
Kouroku, Y.2
Isoai, A.3
Kumagai, H.4
Misutani, A.5
Matsuda, C.6
Hayashi, Y.K.7
Momoi, T.8
-
29
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
-
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25: 402-8. https://doi.org/10.1006/meth.2001.1262.
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
30
-
-
84866130866
-
Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes
-
Marhfour I, Lopez XM, Lefkaditis D, Salmon I, Allagnat F, Richardson SJ, Morgan NG, Eizirik DL. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia. 2012; 55: 2417-20. https://doi.org/10.1007/s00125-012-2604-3.
-
(2012)
Diabetologia
, vol.55
, pp. 2417-2420
-
-
Marhfour, I.1
Lopez, X.M.2
Lefkaditis, D.3
Salmon, I.4
Allagnat, F.5
Richardson, S.J.6
Morgan, N.G.7
Eizirik, D.L.8
-
31
-
-
84890427408
-
Role of endoplasmic reticulum stress induction by the plant toxin, persin, in overcoming resistance to the apoptotic effects of tamoxifen in human breast cancer cells
-
McCloy RA, Shelley EJ, Roberts CG, Boslem E, Biden TJ, Nicholson RI, Gee JM, Sutherland RL, Musgrove EA, Burgess A, Butt AJ. Role of endoplasmic reticulum stress induction by the plant toxin, persin, in overcoming resistance to the apoptotic effects of tamoxifen in human breast cancer cells. Br J Cancer. 2013; 109: 3034-41. https://doi.org/bjc2013693.
-
(2013)
Br J Cancer
, vol.109
, pp. 3034-3041
-
-
McCloy, R.A.1
Shelley, E.J.2
Roberts, C.G.3
Boslem, E.4
Biden, T.J.5
Nicholson, R.I.6
Gee, J.M.7
Sutherland, R.L.8
Musgrove, E.A.9
Burgess, A.10
Butt, A.J.11
|