메뉴 건너뛰기




Volumn 24, Issue 10, 2017, Pages 816-824

NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing

Author keywords

[No Author keywords available]

Indexed keywords

HETERODIMER; LONG NONCODING RNA NEAT1; LONG UNTRANSLATED RNA; MICRORNA; NONO PROTEIN; PSF PROTEIN; RNA BINDING PROTEIN; SMALL UNTRANSLATED RNA; UNCLASSIFIED DRUG; DGCR8 PROTEIN, HUMAN; DROSHA PROTEIN, HUMAN; NEAT1 LONG NON-CODING RNA, HUMAN; NONO PROTEIN, HUMAN; NUCLEAR MATRIX PROTEIN; OCTAMER TRANSCRIPTION FACTOR; PROTEIN BINDING; PTB ASSOCIATED SPLICING FACTOR; RIBONUCLEASE III;

EID: 85030787162     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.3455     Document Type: Article
Times cited : (167)

References (61)
  • 1
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 2
    • 60149086351 scopus 로고    scopus 로고
    • Origin, biogenesis, and activity of plant microRNAs
    • Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687 (2009).
    • (2009) Cell , vol.136 , pp. 669-687
    • Voinnet, O.1
  • 3
    • 84858446579 scopus 로고    scopus 로고
    • MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship
    • Pasquinelli, A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271-282. http://dx.doi. org/10.1038/nrg3162 (2012).
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 271-282
    • Pasquinelli, A.E.1
  • 4
    • 6344281172 scopus 로고    scopus 로고
    • Identification of mammalian microRNA host genes and transcription units
    • Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 10A, 1902-1910 (2004).
    • (2004) Genome Res. , vol.14 , pp. 1902-1910
    • Rodriguez, A.1    Griffiths-Jones, S.2    Ashurst, J.L.3    Bradley, A.4
  • 5
    • 84904985459 scopus 로고    scopus 로고
    • Regulation of microRNA biogenesis
    • Ha, M. & Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509-524 (2014).
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 509-524
    • Ha, M.1    Kim, V.N.2
  • 6
    • 84978877733 scopus 로고    scopus 로고
    • HP1BP3, a chromatin retention factor for co-transcriptional microRNA processing
    • Liu, H. et al. HP1BP3, a chromatin retention factor for co-transcriptional microRNA processing. Mol. Cell 63, 420-432 (2016).
    • (2016) Mol. Cell , vol.63 , pp. 420-432
    • Liu, H.1
  • 7
    • 47549105524 scopus 로고    scopus 로고
    • Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production
    • Pawlicki, J.M. & Steitz, J.A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61-76 (2008).
    • (2008) J. Cell Biol. , vol.182 , pp. 61-76
    • Pawlicki, J.M.1    Steitz, J.A.2
  • 8
    • 33846945735 scopus 로고    scopus 로고
    • Processing of intronic microRNAs
    • Kim, Y.K. & Kim, V.N. Processing of intronic microRNAs. EMBO J. 26, 775-783 (2007).
    • (2007) EMBO J. , vol.26 , pp. 775-783
    • Kim, Y.K.1    Kim, V.N.2
  • 9
    • 51349103700 scopus 로고    scopus 로고
    • Primary microRNA transcripts are processed co-transcriptionally
    • Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902-909 (2008).
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 902-909
    • Morlando, M.1
  • 10
    • 70350442963 scopus 로고    scopus 로고
    • Coupled RNA processing and transcription of intergenic primary microRNAs
    • Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632-5638 (2009).
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5632-5638
    • Ballarino, M.1
  • 11
    • 0037039475 scopus 로고    scopus 로고
    • Paraspeckles: A novel nuclear domain
    • Fox, A.H. et al. Paraspeckles: a novel nuclear domain. Curr. Biol. 12, 13-25 (2002).
    • (2002) Curr. Biol. , vol.12 , pp. 13-25
    • Fox, A.H.1
  • 13
    • 0025719396 scopus 로고
    • Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors
    • Huang, S. & Spector, D.L. Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors. Genes Dev. 5, 12A, 2288-2302 (1991).
    • (1991) Genes Dev. , vol.5 , pp. 2288-2302
    • Huang, S.1    Spector, D.L.2
  • 15
    • 52249111620 scopus 로고    scopus 로고
    • Association between active genes occurs at nuclear speckles and is modulated by chromatin environment
    • Brown, J.M. et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083-1097 (2008).
    • (2008) J. Cell Biol. , vol.182 , pp. 1083-1097
    • Brown, J.M.1
  • 16
    • 84918836602 scopus 로고    scopus 로고
    • The building process of the functional paraspeckle with long non-coding RNAs
    • Yamazaki, T. & Hirose, T. The building process of the functional paraspeckle with long non-coding RNAs. Front. Biosci. (Elite Ed.) 7, 1-41 (2015).
    • (2015) Front. Biosci. (Elite Ed.) , vol.7 , pp. 1-41
    • Yamazaki, T.1    Hirose, T.2
  • 17
    • 84864033675 scopus 로고    scopus 로고
    • Malat1 is not an essential component of nuclear speckles in mice
    • Nakagawa, S. et al. Malat1 is not an essential component of nuclear speckles in mice. RNA 18, 1487-1499 (2012).
    • (2012) RNA , vol.18 , pp. 1487-1499
    • Nakagawa, S.1
  • 18
    • 79955506825 scopus 로고    scopus 로고
    • Paraspeckles are subpopulationspecific nuclear bodies that are not essential in mice
    • Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulationspecific nuclear bodies that are not essential in mice. J. Cell Biol. 193, 31-39 (2011).
    • (2011) J. Cell Biol. , vol.193 , pp. 31-39
    • Nakagawa, S.1    Naganuma, T.2    Shioi, G.3    Hirose, T.4
  • 19
    • 33847185603 scopus 로고    scopus 로고
    • A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains
    • Hutchinson, J.N. et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007).
    • (2007) BMC Genomics , vol.8 , pp. 39
    • Hutchinson, J.N.1
  • 20
    • 56349113455 scopus 로고    scopus 로고
    • 3? End processing of a long nuclearretained noncoding RNA yields a tRNA-like cytoplasmic RNA
    • Wilusz, J.E., Freier, S.M. & Spector, D.L. 3? end processing of a long nuclearretained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919-932 (2008).
    • (2008) Cell , vol.135 , pp. 919-932
    • Wilusz, J.E.1    Freier, S.M.2    Spector, D.L.3
  • 21
    • 62549117314 scopus 로고    scopus 로고
    • An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles
    • Clemson, C.M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717-726 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 717-726
    • Clemson, C.M.1
  • 22
    • 62449319486 scopus 로고    scopus 로고
    • MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles
    • Sasaki, Y.T., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. USA 106, 2525-2530 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 2525-2530
    • Sasaki, Y.T.1    Ideue, T.2    Sano, M.3    Mituyama, T.4    Hirose, T.5
  • 23
    • 26844440157 scopus 로고    scopus 로고
    • Regulating gene expression through RNA nuclear retention
    • Prasanth, K.V. et al. Regulating gene expression through RNA nuclear retention. Cell 123, 249-263 (2005).
    • (2005) Cell , vol.123 , pp. 249-263
    • Prasanth, K.V.1
  • 24
    • 68949212914 scopus 로고    scopus 로고
    • Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: Functional role of a nuclear noncoding RNA
    • Chen, L.L. & Carmichael, G.G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell 35, 467-478 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 467-478
    • Chen, L.L.1    Carmichael, G.G.2
  • 25
    • 84891800602 scopus 로고    scopus 로고
    • NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies
    • Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169-183 (2014).
    • (2014) Mol. Biol. Cell , vol.25 , pp. 169-183
    • Hirose, T.1
  • 26
    • 84893452948 scopus 로고    scopus 로고
    • Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli
    • Imamura, K. et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 53, 393-406 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 393-406
    • Imamura, K.1
  • 27
    • 84921650701 scopus 로고    scopus 로고
    • The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites
    • West, J.A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791-802 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 791-802
    • West, J.A.1
  • 28
    • 84867575580 scopus 로고    scopus 로고
    • Alternative 3?-end processing of long noncoding RNA initiates construction of nuclear paraspeckles
    • Naganuma, T. et al. Alternative 3?-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31, 4020-4034 (2012).
    • (2012) EMBO J. , vol.31 , pp. 4020-4034
    • Naganuma, T.1
  • 30
    • 34447115822 scopus 로고    scopus 로고
    • The multifunctional RNA-binding protein hnRNP A1 is required for processing of MIR-18a
    • Guil, S. & Cáceres, J.F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591-596 (2007).
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 591-596
    • Guil, S.1    Cáceres, J.F.2
  • 31
    • 55849087561 scopus 로고    scopus 로고
    • Gene regulation by SINES and inosines: Biological consequences of A-to-I editing of Alu element inverted repeats
    • Chen, L.L. & Carmichael, G.G. Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 7, 3294-3301 (2008).
    • (2008) Cell Cycle , vol.7 , pp. 3294-3301
    • Chen, L.L.1    Carmichael, G.G.2
  • 32
    • 34447550769 scopus 로고    scopus 로고
    • The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3? Processing and transcription termination
    • Kaneko, S., Rozenblatt-Rosen, O., Meyerson, M. & Manley, J.L. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3? processing and transcription termination. Genes Dev. 21, 1779-1789 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1779-1789
    • Kaneko, S.1    Rozenblatt-Rosen, O.2    Meyerson, M.3    Manley, J.L.4
  • 33
    • 34248579021 scopus 로고    scopus 로고
    • Whitesnake/sfpq is required for cell survival and neuronal development in the zebrafish
    • Lowery, L.A., Rubin, J. & Sive, H. Whitesnake/sfpq is required for cell survival and neuronal development in the zebrafish. Dev. Dyn. 236, 1347-1357 (2007).
    • (2007) Dev. Dyn. , vol.236 , pp. 1347-1357
    • Lowery, L.A.1    Rubin, J.2    Sive, H.3
  • 34
    • 29844444075 scopus 로고    scopus 로고
    • P54nrb is a component of the snRNP-free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation
    • Liang, S. & Lutz, C.S. p54nrb is a component of the snRNP-free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation. RNA 12, 111-121 (2006).
    • (2006) RNA , vol.12 , pp. 111-121
    • Liang, S.1    Lutz, C.S.2
  • 35
    • 61849113891 scopus 로고    scopus 로고
    • MEN epsilon/beta nuclear-retained non-coding RNAs are upregulated upon muscle differentiation and are essential components of paraspeckles
    • Sunwoo, H. et al. MEN epsilon/beta nuclear-retained non-coding RNAs are upregulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19, 347-359 (2009).
    • (2009) Genome Res. , vol.19 , pp. 347-359
    • Sunwoo, H.1
  • 36
    • 77956927823 scopus 로고    scopus 로고
    • The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation
    • Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925-938 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 925-938
    • Tripathi, V.1
  • 38
    • 84874965439 scopus 로고    scopus 로고
    • Paraspeckle formation during the biogenesis of long non-coding RNAs
    • Naganuma, T. & Hirose, T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol. 10, 456-461 (2013).
    • (2013) RNA Biol. , vol.10 , pp. 456-461
    • Naganuma, T.1    Hirose, T.2
  • 39
    • 54349104464 scopus 로고    scopus 로고
    • Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicerdependent small RNAs
    • Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicerdependent small RNAs. Genes Dev. 22, 2773-2785 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 2773-2785
    • Babiarz, J.E.1    Ruby, J.G.2    Wang, Y.3    Bartel, D.P.4    Blelloch, R.5
  • 40
    • 48949100777 scopus 로고    scopus 로고
    • Proteomic identification of a PSF/p54nrb heterodimer as RNF43 oncoprotein-interacting proteins
    • Miyamoto, K., Sakurai, H. & Sugiura, T. Proteomic identification of a PSF/p54nrb heterodimer as RNF43 oncoprotein-interacting proteins. Proteomics 8, 2907-2910 (2008).
    • (2008) Proteomics , vol.8 , pp. 2907-2910
    • Miyamoto, K.1    Sakurai, H.2    Sugiura, T.3
  • 41
    • 84859467060 scopus 로고    scopus 로고
    • Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation
    • Passon, D.M. et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc. Natl. Acad. Sci. USA 109, 4846-4850 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 4846-4850
    • Passon, D.M.1
  • 42
    • 0027245959 scopus 로고
    • Cloning and characterization of PSF, a novel pre-mRNA splicing factor
    • Patton, J.G., Porro, E.B., Galceran, J., Tempst, P. & Nadal-Ginard, B. Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev. 7, 393-406 (1993).
    • (1993) Genes Dev. , vol.7 , pp. 393-406
    • Patton, J.G.1    Porro, E.B.2    Galceran, J.3    Tempst, P.4    Nadal-Ginard, B.5
  • 43
    • 78649637489 scopus 로고    scopus 로고
    • Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies
    • Souquere, S., Beauclair, G., Harper, F., Fox, A. & Pierron, G. Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol. Biol. Cell 21, 4020-4027 (2010).
    • (2010) Mol. Biol. Cell , vol.21 , pp. 4020-4027
    • Souquere, S.1    Beauclair, G.2    Harper, F.3    Fox, A.4    Pierron, G.5
  • 44
    • 84864688599 scopus 로고    scopus 로고
    • DGCR8 HITS-CLIP reveals novel functions for the Microprocessor
    • Macias, S. et al. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat. Struct. Mol. Biol. 19, 760-766 (2012).
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 760-766
    • Macias, S.1
  • 45
    • 78650511795 scopus 로고    scopus 로고
    • Direct visualization of the cotranscriptional assembly of a nuclear body by noncoding RNAs
    • Mao, Y.S., Sunwoo, H., Zhang, B. & Spector, D.L. Direct visualization of the cotranscriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13, 95-101 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 95-101
    • Mao, Y.S.1    Sunwoo, H.2    Zhang, B.3    Spector, D.L.4
  • 46
    • 85019931572 scopus 로고    scopus 로고
    • Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1-1 isoform outside paraspeckles
    • Li, R., Harvey, A.R., Hodgetts, S.I. & Fox, A.H. Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1-1 isoform outside paraspeckles. RNA 23, 872-881 (2017).
    • (2017) RNA , vol.23 , pp. 872-881
    • Li, R.1    Harvey, A.R.2    Hodgetts, S.I.3    Fox, A.H.4
  • 47
    • 59449083420 scopus 로고    scopus 로고
    • Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: Processing at transcription sites or accumulation in SC35 foci
    • Pawlicki, J.M. & Steitz, J.A. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci. Cell Cycle 8, 345-356 (2009).
    • (2009) Cell Cycle , vol.8 , pp. 345-356
    • Pawlicki, J.M.1    Steitz, J.A.2
  • 48
    • 36048958883 scopus 로고    scopus 로고
    • Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins
    • Shiohama, A., Sasaki, T., Noda, S., Minoshima, S. & Shimizu, N. Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp. Cell Res. 313, 4196-4207 (2007).
    • (2007) Exp. Cell Res. , vol.313 , pp. 4196-4207
    • Shiohama, A.1    Sasaki, T.2    Noda, S.3    Minoshima, S.4    Shimizu, N.5
  • 49
    • 84905389814 scopus 로고    scopus 로고
    • MicroRNA directly enhances mitochondrial translation during muscle differentiation
    • Zhang, X. et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607-619 (2014).
    • (2014) Cell , vol.158 , pp. 607-619
    • Zhang, X.1
  • 50
    • 84907251049 scopus 로고    scopus 로고
    • Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells
    • Zeng, C. et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer 14, 693 (2014).
    • (2014) BMC Cancer , vol.14 , pp. 693
    • Zeng, C.1
  • 51
    • 84979073180 scopus 로고    scopus 로고
    • Hypoxic regulation of the noncoding genome and NEAT1
    • Choudhry, H. & Mole, D.R. Hypoxic regulation of the noncoding genome and NEAT1. Brief. Funct. Genomics 15, 174-185 (2016).
    • (2016) Brief. Funct. Genomics , vol.15 , pp. 174-185
    • Choudhry, H.1    Mole, D.R.2
  • 52
    • 84939778620 scopus 로고    scopus 로고
    • Tumor hypoxia induces nuclear paraspeckle formation through HIF-2? Dependent transcriptional activation of NEAT1 leading to cancer cell survival
    • Choudhry, H. et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2? dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34, 4482-4490 (2015).
    • (2015) Oncogene , vol.34 , pp. 4482-4490
    • Choudhry, H.1
  • 53
    • 84911466128 scopus 로고    scopus 로고
    • The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice
    • Nakagawa, S. et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141, 4618-4627 (2014).
    • (2014) Development , vol.141 , pp. 4618-4627
    • Nakagawa, S.1
  • 54
    • 84976902062 scopus 로고    scopus 로고
    • P53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity
    • Adriaens, C. et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 22, 861-868 (2016).
    • (2016) Nat. Med. , vol.22 , pp. 861-868
    • Adriaens, C.1
  • 55
    • 78649714014 scopus 로고    scopus 로고
    • Analysis and design of RNA sequencing experiments for identifying isoform regulation
    • Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009-1015 (2010).
    • (2010) Nat. Methods , vol.7 , pp. 1009-1015
    • Katz, Y.1    Wang, E.T.2    Airoldi, E.M.3    Burge, C.B.4
  • 56
    • 78651293534 scopus 로고    scopus 로고
    • MiRBase: Integrating microRNA annotation and deep-sequencing data
    • Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152-D157 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. D152-D157
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 57
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
    • (2009) Genome Biol. , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 58
    • 84855293838 scopus 로고    scopus 로고
    • MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades
    • Friedländer, M.R., Mackowiak, S.D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37-52 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 37-52
    • Friedländer, M.R.1    Mackowiak, S.D.2    Li, N.3    Chen, W.4    Rajewsky, N.5
  • 59
    • 84890132388 scopus 로고    scopus 로고
    • Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges
    • Lovci, M.T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434-1442 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1434-1442
    • Lovci, M.T.1
  • 60
    • 84908879645 scopus 로고    scopus 로고
    • Mechanisms for U2AF to define 3? Splice sites and regulate alternative splicing in the human genome
    • Shao, C. et al. Mechanisms for U2AF to define 3? splice sites and regulate alternative splicing in the human genome. Nat. Struct. Mol. Biol. 21, 997-1005 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 997-1005
    • Shao, C.1
  • 61
    • 85017133693 scopus 로고    scopus 로고
    • DeepTools2: A next generation web server for deep-sequencing data analysis
    • Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W1, W160-W165 (2016).
    • (2016) Nucleic Acids Res. , vol.44 , pp. W160-W165
    • Ramírez, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.