-
1
-
-
84990210303
-
Progress in thin film CIGS photovoltaics-Research and development, manufacturing, and applications
-
T. Feurer et al., "Progress in thin film CIGS photovoltaics-Research and development, manufacturing, and applications," Prog. Photovolt.: Res. Appl., vol. 25, pp. 645-667, 2017.
-
(2017)
Prog. Photovolt.: Res. Appl.
, vol.25
, pp. 645-667
-
-
Feurer, T.1
-
2
-
-
42249114488
-
19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor
-
I. Repins et al., "19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor," Prog. Photovolt.: Res. Appl., vol. 16, pp. 235-239, 2008.
-
(2008)
Prog. Photovolt.: Res. Appl.
, vol.16
, pp. 235-239
-
-
Repins, I.1
-
3
-
-
80054081433
-
New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%
-
P. Jackson et al., "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," Prog. Photovolt.: Res. Appl., vol. 19, pp. 894-897, 2011.
-
(2011)
Prog. Photovolt.: Res. Appl.
, vol.19
, pp. 894-897
-
-
Jackson, P.1
-
4
-
-
84888197833
-
Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells
-
A. Chirilǎ et al., "Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells," Nature Mater., vol. 12, pp. 1107-1111, 2013.
-
(2013)
Nature Mater.
, vol.12
, pp. 1107-1111
-
-
Chirilǎ, A.1
-
5
-
-
84896029560
-
Compositional investigation of potassium dopedCu(In,Ga)Se2 solar cells with efficiencies up to 20.8%
-
P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, "Compositional investigation of potassium dopedCu(In,Ga)Se2 solar cells with efficiencies up to 20.8%," Phys. Status Solidi - Rapid Res. Lett., vol. 8, pp. 219-222, 2014.
-
(2014)
Phys. Status Solidi - Rapid Res. Lett.
, vol.8
, pp. 219-222
-
-
Jackson, P.1
Hariskos, D.2
Wuerz, R.3
Wischmann, W.4
Powalla, M.5
-
6
-
-
84912061407
-
Recent R&Dprogress in Solar Frontier's small-sized Cu(InGa)(SeS)2 solar cells
-
M.Nakamura et al., "Recent R&Dprogress in Solar Frontier's small-sized Cu(InGa)(SeS)2 solar cells," in Proc. 40th IEEE Photovolt. Spec. Conf., 2014, pp. 107-110.
-
(2014)
Proc. 40th IEEE Photovolt. Spec. Conf.
, pp. 107-110
-
-
Nakamura, M.1
-
7
-
-
84921437464
-
Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%
-
P. Jackson et al., "Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%," Phys. Status Solidi - Rapid Res. Lett., vol. 9, pp. 28-31, 2015.
-
(2015)
Phys. Status Solidi - Rapid Res. Lett.
, vol.9
, pp. 28-31
-
-
Jackson, P.1
-
8
-
-
85003481009
-
New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%
-
R. Kamada et al., "New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%," in Proc. 43rd IEEE Photovolt. Spec. Conf., 2016, pp. 1287-1291.
-
(2016)
Proc. 43rd IEEE Photovolt. Spec. Conf.
, pp. 1287-1291
-
-
Kamada, R.1
-
9
-
-
84982272607
-
Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%
-
P. Jackson et al., "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%," Phys. Status Solidi - Rapid Res. Lett., vol. 10, pp. 583-586, 2016.
-
(2016)
Phys. Status Solidi - Rapid Res. Lett.
, vol.10
, pp. 583-586
-
-
Jackson, P.1
-
10
-
-
1542678964
-
Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation
-
D. Rudmann et al., "Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation," Appl. Phys. Lett., vol. 84, pp. 1129-1131, 2004.
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 1129-1131
-
-
Rudmann, D.1
-
11
-
-
84912144571
-
High efficiency and large volume production of CIS-based modules
-
H. Sugimoto, "High efficiency and large volume production of CIS-based modules," in Proc. 40th IEEE Photovolt. Spec. Conf., 2014, pp. 2767-2770.
-
(2014)
Proc. 40th IEEE Photovolt. Spec. Conf.
, pp. 2767-2770
-
-
Sugimoto, H.1
-
12
-
-
85017143382
-
Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status
-
T. Kato, "Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status," Jpn. J. Appl. Phys., vol. 56, pp. 04CA02-1-04CA02-8, 2017.
-
(2017)
Jpn. J. Appl. Phys.
, vol.56
, pp. 04CA021-04CA028
-
-
Kato, T.1
-
13
-
-
85024902654
-
From 20.9% to 22.3% Cu(In,Ga)(S,Se)2 solar cell: Reduced recombination rate at the heterojunction and the depletion region due to K-treatment
-
K. F. Tai, R. Kamada, T. Yagioka, T. Kato, and H. Sugimoto, "From 20.9% to 22.3% Cu(In,Ga)(S,Se)2 solar cell: Reduced recombination rate at the heterojunction and the depletion region due to K-treatment," Jpn. J. Appl. Phys., vol. 56, pp. 08MC03-1-08MC03-6, 2017.
-
(2017)
Jpn. J. Appl. Phys.
, vol.56
, pp. 08MC031-08MC036
-
-
Tai, K.F.1
Kamada, R.2
Yagioka, T.3
Kato, T.4
Sugimoto, H.5
-
14
-
-
85003967095
-
Solar cell efficiency tables (version 49)
-
M. A. Green et al., "Solar cell efficiency tables (version 49)," Prog. Photovolt.: Res. Appl., vol. 25, pp. 3-13, 2017.
-
(2017)
Prog. Photovolt.: Res. Appl.
, vol.25
, pp. 3-13
-
-
Green, M.A.1
-
15
-
-
85036506651
-
-
Solar Frontier Press Rel. (Feb. 27, 2017). Solar Frontier's CIS thin-film submodule achieves highest efficiency world record of 19.2%. [Online]
-
Solar Frontier Press Rel. (Feb. 27, 2017). Solar Frontier's CIS thin-film submodule achieves highest efficiency world record of 19.2%. [Online]. Available: http://www.solar-frontier.com/eng/news/ 2017/0227-press.html
-
-
-
-
16
-
-
85021096605
-
Solar cell efficiency tables (version 50)
-
M. A. Green et al., "Solar cell efficiency tables (version 50)," Prog. Photovolt.: Res. Appl., vol. 25, pp. 668-676, 2017.
-
(2017)
Prog. Photovolt.: Res. Appl.
, vol.25
, pp. 668-676
-
-
Green, M.A.1
-
17
-
-
84858687600
-
Design of energy band alignment at the Zn1 -xMgx O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells
-
C.-S. Lee, L. Larina, Y.-M. Shin, E. A. Al-Ammar, and B. T. Ahn, "Design of energy band alignment at the Zn1 -xMgx O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells," Phys. Chem. Chem. Phys., vol. 14, pp. 4789-4795, 2012.
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 4789-4795
-
-
Lee, C.-S.1
Larina, L.2
Shin, Y.-M.3
Al-Ammar, E.A.4
Ahn, B.T.5
-
18
-
-
84954094567
-
Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu2 ZnSnSe4
-
C. J. Hages, N. J. Carter, and R. Agrawal, "Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu2 ZnSnSe4 ," J. Appl. Phys., vol. 119, pp. 014505-1-014505-17, 2016.
-
(2016)
J. Appl. Phys.
, vol.119
, pp. 0145051-01450517
-
-
Hages, C.J.1
Carter, N.J.2
Agrawal, R.3
-
19
-
-
0005798238
-
Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells
-
B. Ohnesorge et al., "Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells," Appl. Phys. Lett., vol. 73, pp. 1224-1226, 1998.
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 1224-1226
-
-
Ohnesorge, B.1
-
20
-
-
7244258880
-
Determination of the band gap depth profile of the penternary Cu(In(1-X )GaX )(SY Se(1-Y ) )2 chalcopyrite from its composition gradient
-
M. Bär et al., "Determination of the band gap depth profile of the penternary Cu(In(1-X )GaX )(SY Se(1-Y ) )2 chalcopyrite from its composition gradient," J. Appl. Phys., vol. 96, pp. 3857-3860, 2004.
-
(2004)
J. Appl. Phys.
, vol.96
, pp. 3857-3860
-
-
Bär, M.1
-
21
-
-
0035283792
-
Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance ofCIS solar cells using device simulation
-
T. Minemoto et al., "Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance ofCIS solar cells using device simulation," Sol. Energy Mater. Sol. Cells, vol. 67, pp. 83-88, 2001.
-
(2001)
Sol. Energy Mater. Sol. Cells
, vol.67
, pp. 83-88
-
-
Minemoto, T.1
-
22
-
-
84929150871
-
Alkali-templated surface nanopatterning of chalcogenide thin films: A novel approach toward solar cells with enhanced efficiency
-
P. Reinhard et al., "Alkali-templated surface nanopatterning of chalcogenide thin films: A novel approach toward solar cells with enhanced efficiency," Nano Lett., vol. 15, pp. 3334-3340, 2015.
-
(2015)
Nano Lett.
, vol.15
, pp. 3334-3340
-
-
Reinhard, P.1
-
23
-
-
84867867929
-
Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency
-
M. A. Contreras et al., "Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency," Prog. Photovolt.: Res. Appl., vol. 20, pp. 843-850, 2012.
-
(2012)
Prog. Photovolt.: Res. Appl.
, vol.20
, pp. 843-850
-
-
Contreras, M.A.1
-
24
-
-
85036512208
-
Characterization of the back contact of CIGS solar cell as the origin of rollover effect
-
T. Kato et al., "Characterization of the back contact of CIGS solar cell as the origin of rollover effect," in Proc. 32nd Eur. Photovolt. Sol. Energy Conf., 2016, pp. 1085-1088.
-
(2016)
Proc. 32nd Eur. Photovolt. Sol. Energy Conf.
, pp. 1085-1088
-
-
Kato, T.1
-
25
-
-
1142269587
-
Bulk and metastable defects in CuIn1-x Gax Se2 thin films using drive-level capacitance profiling
-
J. T. Heath, J. D. Cohen, and W. N. Shafarman, "Bulk and metastable defects in CuIn1-x Gax Se2 thin films using drive-level capacitance profiling," J. Appl. Phys., vol. 95, pp. 1000-1010, 2004.
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 1000-1010
-
-
Heath, J.T.1
Cohen, J.D.2
Shafarman, W.N.3
-
26
-
-
84884204723
-
Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride
-
A. Laemmle, R. Wuerz, and M. Powalla, "Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride," Phys. Status Solidi - Rapid Res. Lett., vol. 7, pp. 631-634, 2013.
-
(2013)
Phys. Status Solidi - Rapid Res. Lett.
, vol.7
, pp. 631-634
-
-
Laemmle, A.1
Wuerz, R.2
Powalla, M.3
-
27
-
-
84898813268
-
Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells
-
F. Pianezzi et al., "Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells," Phys. Chem. Chem. Phys., vol. 16, pp. 8843-8851, 2014.
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 8843-8851
-
-
Pianezzi, F.1
-
28
-
-
84976417353
-
Effect of potassium fluoride post-deposition treatment on Cu(In,Ga)Se2 thin films and solar cells fabricated onto sodalime glass substrates
-
I. Khatri, H. Fukai, H.Yamaguchi,M. Sugiyama, and T. Nakada, "Effect of potassium fluoride post-deposition treatment on Cu(In,Ga)Se2 thin films and solar cells fabricated onto sodalime glass substrates," Sol. Energy Mater. Sol. Cells, vol. 155, pp. 280-287, 2016.
-
(2016)
Sol. Energy Mater. Sol. Cells
, vol.155
, pp. 280-287
-
-
Khatri, I.1
Fukai, H.2
Yamaguchi, H.3
Sugiyama, M.4
Nakada, T.5
-
29
-
-
84865167432
-
Characterization of grain boundaries in Cu(In,Ga)Se2 films using atom-probe tomography
-
Oct.
-
O. Cojocaru-Mirédin et al., "Characterization of grain boundaries in Cu(In,Ga)Se2 films using atom-probe tomography," IEEE J. Photovolt., vol. 1, no. 2, pp. 207-212, Oct. 2011.
-
(2011)
IEEE J. Photovolt.
, vol.1
, Issue.2
, pp. 207-212
-
-
Cojocaru-Mirédin, O.1
-
30
-
-
84940066865
-
Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment
-
P. Pistor et al., "Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment," Appl. Phys. Lett., vol. 105, pp. 063901-1-063901-4, 2014.
-
(2014)
Appl. Phys. Lett.
, vol.105
, pp. 0639011-0639014
-
-
Pistor, P.1
-
31
-
-
84857382071
-
Na incorporation into Cu(In,Ga)Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure
-
X. Song et al., "Na incorporation into Cu(In,Ga)Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure," J. Appl. Phys., vol. 111, pp. 034903-1-034903-8, 2012.
-
(2012)
J. Appl. Phys.
, vol.111
, pp. 0349031-0349038
-
-
Song, X.1
-
32
-
-
84894596030
-
A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions
-
J. V. Li et al., "A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions," Sol. Energy Mater. Sol. Cells, vol. 124, pp. 143-149, 2014.
-
(2014)
Sol. Energy Mater. Sol. Cells
, vol.124
, pp. 143-149
-
-
Li, J.V.1
-
33
-
-
84923933425
-
Cu(In,Ga)Se2 thin-film solar cells and modules - A boost in efficiency due to potassium
-
Mar.
-
P. Reinhard et al., "Cu(In,Ga)Se2 thin-film solar cells and modules - A boost in efficiency due to potassium," IEEE J. Photovolt., vol. 5, no. 2, pp. 656-663, Mar. 2015.
-
(2015)
IEEE J. Photovolt.
, vol.5
, Issue.2
, pp. 656-663
-
-
Reinhard, P.1
-
34
-
-
84908256711
-
Enhanced performance inCu(In,Ga)Se2 solar cells fabricated by the two-step selenization process with a potassium fluoride postdeposition treatment
-
Nov.
-
L. M. Mansfield et al., "Enhanced performance inCu(In,Ga)Se2 solar cells fabricated by the two-step selenization process with a potassium fluoride postdeposition treatment," IEEE J. Photovolt., vol. 4, no. 6, pp. 1650-1654, Nov. 2014.
-
(2014)
IEEE J. Photovolt.
, vol.4
, Issue.6
, pp. 1650-1654
-
-
Mansfield, L.M.1
-
35
-
-
0023347583
-
Phase relations in the ternary system Cu-In-Se
-
U.-C. Boehnke and G. Kühn, "Phase relations in the ternary system Cu-In-Se," J. Mater. Sci., vol. 22, pp. 1635-1641, 1987.
-
(1987)
J. Mater. Sci.
, vol.22
, pp. 1635-1641
-
-
Boehnke, U.-C.1
Kühn, G.2
-
36
-
-
84956039823
-
Phase relations in the system Cu2 S-In2 S3
-
J. J. M. Binsma, L. J. Giling, and J. Bloem, "Phase relations in the system Cu2 S-In2 S3 ," J. Cryst. Growth, vol. 50, pp. 429-439, 1980.
-
(1980)
J. Cryst. Growth
, vol.50
, pp. 429-439
-
-
Binsma, J.J.M.1
Giling, L.J.2
Bloem, J.3
-
37
-
-
85017384614
-
Crystallographic and optical properties of CuGa3 S5, CuGa3 Se5 and CuIn3 (S,Se)5 and CuGa3 (S,Se)5 systems
-
K. Ueda, T. Maeda, and T. Wada, "Crystallographic and optical properties of CuGa3 S5, CuGa3 Se5 and CuIn3 (S,Se)5 and CuGa3 (S,Se)5 systems," Thin Solid Films, vol. 633, pp. 23-30, 2017, doi: 10.1016/j.tsf.2017.01.036.
-
(2017)
Thin Solid Films
, vol.633
, pp. 23-30
-
-
Ueda, K.1
Maeda, T.2
Wada, T.3
-
38
-
-
84950123489
-
Potassium postdeposition treatment-induced band gap widening at Cu(In,Ga)Se2 surfaces-Reason for performance leap?
-
E. Handick et al., "Potassium postdeposition treatment-induced band gap widening at Cu(In,Ga)Se2 surfaces-Reason for performance leap?" ACS Appl. Mater. Interfaces, vol. 7, pp. 27414-27420, 2015.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 27414-27420
-
-
Handick, E.1
-
39
-
-
84938503883
-
Control of valence band offset at CdS/Cu(In,Ga)Se2 interface by inserting wide-bandgap materials for suppression of interfacial recombination in Cu(In,Ga)Se2 solar cells
-
T. Nishimura, Y. Hirai, Y. Kurokawa, and A. Yamada, "Control of valence band offset at CdS/Cu(In,Ga)Se2 interface by inserting wide-bandgap materials for suppression of interfacial recombination in Cu(In,Ga)Se2 solar cells," Jpn. J. Appl. Phys., vol. 54, pp. 08KC08-1-08KC08-5, 2015.
-
(2015)
Jpn. J. Appl. Phys.
, vol.54
, pp. 08KC081-08KC085
-
-
Nishimura, T.1
Hirai, Y.2
Kurokawa, Y.3
Yamada, A.4
|