-
1
-
-
38049110881
-
Combining stochastic block models and mixed membership for statistical network analysis
-
Springer
-
Airoldi, E.; Blei, D.; Fienberg, S.; and Xing, E. 2007. Combining stochastic block models and mixed membership for statistical network analysis. In Statistical Network Analysis: Models, Issues, and New Directions. Springer. 57–74.
-
(2007)
Statistical Network Analysis: Models, Issues, and New Directions
, pp. 57-74
-
-
Airoldi, E.1
Blei, D.2
Fienberg, S.3
Xing, E.4
-
4
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the EM algorithm
-
Dawid, A. P., and Skene, A. M. 1979. Maximum likelihood estimation of observer error-rates using the EM algorithm. Journal of the Royal Statistical Society. Series C 28(1):20–28.
-
(1979)
Journal of the Royal Statistical Society. Series C
, vol.28
, Issue.1
, pp. 20-28
-
-
Dawid, A. P.1
Skene, A. M.2
-
5
-
-
52949126188
-
Describing disability through individual-level mixture models for multivariate binary data
-
Erosheva, E.; Fienberg, S.; and Joutard, C. 2007. Describing disability through individual-level mixture models for multivariate binary data. The annals of applied statistics 1(2):346.
-
(2007)
The annals of applied statistics
, vol.1
, Issue.2
, pp. 346
-
-
Erosheva, E.1
Fienberg, S.2
Joutard, C.3
-
6
-
-
33745155436
-
A Bayesian hierarchical model for learning natural scene categories
-
IEEE
-
Fei-Fei, L., and Perona, P. 2005. A Bayesian hierarchical model for learning natural scene categories. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, 524–531. IEEE.
-
(2005)
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
, vol.2
, pp. 524-531
-
-
Fei-Fei, L.1
Perona, P.2
-
7
-
-
84878919168
-
Stochastic variational inference
-
Hoffman, M.; Blei, D.; Wang, C.; and Paisley, J. 2013. Stochastic variational inference. J. Mach. Learn. Res. 14(1):1303–1347.
-
(2013)
J. Mach. Learn. Res
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.1
Blei, D.2
Wang, C.3
Paisley, J.4
-
8
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Jordan, M. I.; Ghahramani, Z.; Jaakkola, T.; and Saul, L. 1999. An introduction to variational methods for graphical models. Mach. Learn. 37(2):183–233.
-
(1999)
Mach. Learn
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M. I.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
11
-
-
84876811202
-
Rcv1: A new benchmark collection for text categorization research
-
Lewis, D.; Yang, Y.; Rose, T.; and Li, F. 2004. Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5:361–397.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 361-397
-
-
Lewis, D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
15
-
-
45049084813
-
Unsupervised learning of human action categories using spatial-temporal words
-
Niebles, J.; Wang, H.; and Fei-Fei, L. 2008. Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vision 79(3):299–318.
-
(2008)
Int. J. Comput. Vision
, vol.79
, Issue.3
, pp. 299-318
-
-
Niebles, J.1
Wang, H.2
Fei-Fei, L.3
-
17
-
-
80053392186
-
Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
-
Association for Computational Linguistics
-
Ramage, D.; Hall, D.; Nallapati, R.; and Manning, C. 2009. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, 248–256. Association for Computational Linguistics.
-
(2009)
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing
, pp. 248-256
-
-
Ramage, D.1
Hall, D.2
Nallapati, R.3
Manning, C.4
-
18
-
-
77951954464
-
Learning from Crowds
-
Raykar, V.; Yu, S.; Zhao, L.; Valadez, G.; Florin, C.; Bogoni, L.; and Moy, L. 2010. Learning from Crowds. Journal of Machine Learning Research 1297–1322.
-
(2010)
Journal of Machine Learning Research
, pp. 1297-1322
-
-
Raykar, V.1
Yu, S.2
Zhao, L.3
Valadez, G.4
Florin, C.5
Bogoni, L.6
Moy, L.7
-
19
-
-
0000016172
-
A stochastic approximation method
-
Robbins, H., and Monro, S. 1951. A stochastic approximation method. Ann. Math. Statist. 22(3):400–407.
-
(1951)
Ann. Math. Statist
, vol.22
, Issue.3
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
20
-
-
84878784643
-
Learning from multiple annotators: distinguishing good from random labelers
-
Rodrigues, F.; Pereira, F.; and Ribeiro, B. 2013. Learning from multiple annotators: distinguishing good from random labelers. Pattern Recognition Letters 1428–1436.
-
(2013)
Pattern Recognition Letters
, pp. 1428-1436
-
-
Rodrigues, F.1
Pereira, F.2
Ribeiro, B.3
-
22
-
-
39749186006
-
Labelme: a database and web-based tool for image annotation
-
Russell, B.; Torralba, A.; Murphy, K.; and Freeman, W. 2008. Labelme: a database and web-based tool for image annotation. International journal of computer vision 77(1-3):157–173.
-
(2008)
International journal of computer vision
, vol.77
, Issue.1-3
, pp. 157-173
-
-
Russell, B.1
Torralba, A.2
Murphy, K.3
Freeman, W.4
-
23
-
-
85153964878
-
Inferring ground truth from subjective labelling of venus images
-
Smyth, P.; Fayyad, U.; Burl, M.; Perona, P.; and Baldi, P. 1995. Inferring ground truth from subjective labelling of venus images. In Advances in Neural Information Processing Systems, 1085–1092.
-
(1995)
Advances in Neural Information Processing Systems
, pp. 1085-1092
-
-
Smyth, P.1
Fayyad, U.2
Burl, M.3
Perona, P.4
Baldi, P.5
-
24
-
-
80053360508
-
Cheap and fast - but is it good?: Evaluating non-expert annotations for natural language tasks
-
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. 2008. Cheap and fast - but is it good?: Evaluating non-expert annotations for natural language tasks. In Proc. of the Conf. on Empirical Methods in Natural Language Processing, 254–263.
-
(2008)
Proc. of the Conf. on Empirical Methods in Natural Language Processing
, pp. 254-263
-
-
Snow, R.1
O’Connor, B.2
Jurafsky, D.3
Ng, A.4
-
25
-
-
70450178502
-
Simultaneous image classification and annotation
-
IEEE
-
Wang, C.; Blei, D.; and Fei-Fei, L. 2009. Simultaneous image classification and annotation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 1903–1910. IEEE.
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 1903-1910
-
-
Wang, C.1
Blei, D.2
Fei-Fei, L.3
-
26
-
-
85162055266
-
The multidimensional wisdom of crowds
-
Welinder, P.; Branson, S.; Perona, P.; and Belongie, S. 2010. The multidimensional wisdom of crowds. In Advances in neural information processing systems, 2424–2432.
-
(2010)
Advances in neural information processing systems
, pp. 2424-2432
-
-
Welinder, P.1
Branson, S.2
Perona, P.3
Belongie, S.4
-
27
-
-
80052400610
-
Modeling annotator expertise: Learning when everybody knows a bit of something
-
Yan, Y.; Rosales, R.; Fung, G.; Schmidt, M.; Valadez, G.; Bogoni, L.; Moy, L.; and Dy, J. 2010. Modeling annotator expertise: Learning when everybody knows a bit of something. Journal of Machine Learning Research 9:932–939.
-
(2010)
Journal of Machine Learning Research
, vol.9
, pp. 932-939
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Schmidt, M.4
Valadez, G.5
Bogoni, L.6
Moy, L.7
Dy, J.8
-
28
-
-
84901497847
-
Learning from multiple annotators with varying expertise
-
Yan, Y.; Rosales, R.; Fung, G.; Subramanian, R.; and Dy, J. 2014. Learning from multiple annotators with varying expertise. Mach. Learn. 95(3):291–327.
-
(2014)
Mach. Learn
, vol.95
, Issue.3
, pp. 291-327
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Subramanian, R.4
Dy, J.5
-
29
-
-
84869186087
-
Medlda: Maximum margin supervised topic models
-
Zhu, J.; Ahmed, A.; and Xing, E. 2012. Medlda: Maximum margin supervised topic models. J. Mach. Learn. Res. 13(1):2237–2278.
-
(2012)
J. Mach. Learn. Res
, vol.13
, Issue.1
, pp. 2237-2278
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.3
|