메뉴 건너뛰기




Volumn 95, Issue 3, 2014, Pages 291-327

Learning from multiple annotators with varying expertise

Author keywords

Adversarial annotators; Classification; Crowdsourcing; Graphical models; Multiple labelers; Opinion aggregation

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION);

EID: 84901497847     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5412-1     Document Type: Article
Times cited : (226)

References (33)
  • 5
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Morgan Kaufmann San Mateo
    • Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. In International conference on machine learning (pp. 19-26). San Mateo: Morgan Kaufmann.
    • (2001) International Conference on Machine Learning , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 9
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observed error-rates using the em algorithm
    • 10.2307/2346806
    • Dawid, A. P., & Skeene, A. M. (1979). Maximum likelihood estimation of observed error-rates using the EM algorithm. Applied Statistics, 28, 20-28.
    • (1979) Applied Statistics , vol.28 , pp. 20-28
    • Dawid, A.P.1    Skeene, A.M.2
  • 12
    • 70349254685 scopus 로고    scopus 로고
    • Proactive learning: Cost-sensitive active learning with multiple imperfect oracles
    • ACM New York
    • Donmez, P., & Carbonell, J. G. (2008). Proactive learning: cost-sensitive active learning with multiple imperfect oracles. In Conference on information and knowledge management (pp. 619-628). New York: ACM.
    • (2008) Conference on Information and Knowledge Management , pp. 619-628
    • Donmez, P.1    Carbonell, J.G.2
  • 13
    • 78649934709 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • Frank, A., & Asuncion, A. (2010). UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. URL http://archive.ics.uci.edu/ml.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 15
    • 0031772593 scopus 로고    scopus 로고
    • Evaluation of diagnostic tests without a gold standard
    • 10.1191/096228098671192352
    • Hui, S. L., & Zhou, X. H. (1998). Evaluation of diagnostic tests without a gold standard. Statistical Methods in Medical Research, 7, 354-370.
    • (1998) Statistical Methods in Medical Research , vol.7 , pp. 354-370
    • Hui, S.L.1    Zhou, X.H.2
  • 17
    • 79952398813 scopus 로고    scopus 로고
    • CoBayes: Bayesian knowledge corroboration with assessors of unknown areas of expertise
    • Kasneci, G., Gael, J. V., Stern, D., & Graepel, T. (2011). CoBayes: Bayesian knowledge corroboration with assessors of unknown areas of expertise. In Conference on web search and data mining (pp. 465-474).
    • (2011) Conference on Web Search and Data Mining , pp. 465-474
    • Kasneci, G.1    Gael, J.V.2    Stern, D.3    Graepel, T.4
  • 22
    • 85162536261 scopus 로고    scopus 로고
    • Ranking annotators for crowdsourced labeling tasks
    • MIT Press Cambridge
    • Raykar, V. C., & Yu, S. (2011). Ranking annotators for crowdsourced labeling tasks. In Advances in neural information processing systems (pp. 1809-1817). Cambridge: MIT Press.
    • (2011) Advances in Neural Information Processing Systems , pp. 1809-1817
    • Raykar, V.C.1    Yu, S.2
  • 27
  • 28
    • 0020965367 scopus 로고
    • An analysis of repeated biopsies following cardiac transplantation
    • 10.1002/sim.4780020105
    • Spiegelhalter, D. J., & Stovin, P. (1983). An analysis of repeated biopsies following cardiac transplantation. Statistics in Medicine, 2(1), 33-40.
    • (1983) Statistics in Medicine , vol.2 , Issue.1 , pp. 33-40
    • Spiegelhalter, D.J.1    Stovin, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.